

HVR1000 DIGITAL VOLTAGE REGULATOR USER MANUAL

SmartGen Registered trademark

No. 28 Xuemei Street, Zhengzhou, Henan, China Tel: +86-371-67988888/67981888/67992951 +86-371-67981000(overseas) Fax: +86-371-67992952 Web: <u>www.smartgen.com.cn/</u> <u>www.smartgen.cn/</u> Email: sales@smartgen.cn

All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or other) without the written permission of the copyright holder.

SmartGen reserves the right to change the contents of this document without prior notice.

DateVersionNote2023-08-311.0Original Release2023-12-011. Modify homepage picture and indication picture;
2. Modify calculation example of voltage target value in AVR
mode;
3. Modify calculation example of field current target value in
FCR mode.Image: Provide target targ

Table 1 Software Version

Table 2 Symbol Instruction

Symbol	Instruction
A NOTE	Highlights an essential element of a procedure to ensure correctness.
	Indicates a procedure or practice, which, if not strictly observed, could result in
CAUTION	damage or destruction of equipment.
	Indicates a procedure or practice, which could result in injury to personnel or loss of
WARNING	life if not followed correctly.

CONTENTS

1	OVEF	RVIEW		6
2	PER	FORMA	NCE AND CHARACTERISTICS	6
3	SPE	CIFICAT	10N	8
4	OPE	RATION		10
	4.1	ILLUST	FRATION	10
		4.1.1	INDICATOR AND WIRING	10
		4.1.2	EXCITATION POWER INPUT	11
		4.1.3	EXCITATION OUTPUT	12
		4.1.4	GEN VOLTAGE DETECTION INPUT	
		4.1.5	GEN CURRENT DETECTION	
		4.1.6	ANALOG INPUT	14
		4.1.7	DIGITAL INPUT	14
		4.1.8	DIGITAL OUTPUT	
		4.1.9	CAN COMMUNICATION INTERFACE	15
	4.2	EXCIT	ATION REGULATION	
		4.2.1	SCHEMATIC DIAGRAM	16
		4.2.2	START	16
		4.2.3	AUTOMATIC VOLTAGE REGULATION (AVR)	
		4.	2.3.1 ILLUSTRATION	
		4.	2.3.2 U/F SLOP CHARACTERISTIC	19
		4.	2.3.3 DROOP CONTROL	19
		4.	2.3.4 TRANSMISSION LINE DROP COMPENSATION	19
		4.	2.3.5 LOAD COMPENSATION	20
		4.	2.3.6 RUNNING PROCESS	21
		4.2.4	FIELD CURRENT REGULATION MODE (FCR)	21
		4.2.5	REACTIVE POWER REGULATION MODE (VAR)	22
		4.2.6	POWER FACTOR REGULATION MODE (PF)	23
5	PRO	TECTIO	N AND LIMIT	25
	5.1	WARN	ING ALARM	25
	5.2	FAULT	ALARM	27
	5.3	UNDEF	R EXCITATION LIMIT	29
	5.4	OVER	EXCITATION LIMIT	29
	5.5	STATC	OR CURRENT LIMIT	31
6	PAR	AMETE	R RANGE AND DEFINITION	33
	6.1	PARAN	METER SETTING CONTENT AND RANGE	33
	6.2	DEFIN	ED CONTENTS OF PROGRAMMABLE OUTPUT 1-2	43
		6.2.1	DEFINED CONTENTS TABLE OF PROGRAMMABLE OUTPUT 1-2	43
		6.2.2	DEFINED COMBINATION OUTPUT	44
	6.3	DEFIN	ED CONTENTS OF DIGITAL INPUT 1-4	45

7	PARAMETER SETTING	46
8	REAL-TIME DATA ANALYSIS	. 47
9	BLUETOOTH CONNECTION	47
10	COMMISSIONING	49
11	TYPICAL APPLICATION	50
12	INSTALLATION	51
	12.1 OVERALL AND INSTALLATION DIMENSION	51
	12.2 INSTALLATION METHOD AND WAY	52
13	FAULT FINDING	54
14	APPENDIX 1 (CAN COMMUNICATION PROTOCOL)	55
15	APPENDIX 2 SYMBOL AND TERM DEFINITION	. 58

1 OVERVIEW

HVR1000 Digital Voltage Regulator is used to adjust the field current of brushless AC synchronous generator. It has four excitation regulation modes: automatic voltage regulation (AVR), field current regulation (FCR), reactive power regulation (VAR), power factor regulation (PF). It adopts CAN BUS interface and follows SAE J1939-75 protocol.

The product uses 32-bit micro-processor technique which can achieve precision measurement, protection threshold adjusting, real-time data monitoring and analysis, flexible and comprehensive fault protection, etc. All parameters can be read and configured through USB interface via PC or Bluetooth via mobile APP. It can be widely used in all types of brushless AC synchronous generators like PMG, AREP, SHUNT, etc. for its compact structure, simple connections and high reliability.

2 PERFORMANCE AND CHARACTERISTICS

Main characteristics are as following:

- Four excitation regulation modes: automatic voltage regulation (AVR), field current regulation (FCR), reactive power regulation (VAR), power factor regulation (PF);
- > Over-excitation limit, under-excitation limit, stator current limit, U/F limit function is fitted;
- Soft start function is fitted for automatic voltage regulation (AVR) and field current regulation (FCR) modes;
- > PID algorithm for excitation regulation and parameters of four modes are independent;
- Adjusting output target value via digital input, analog voltage input, analog resistance input, CAN communication;
- > The secondary rated current of current transformer can be set as 5A or 1A;
- Under the voltage of 63V or 125V, it can continuously provide 7A current (70°C of room temperature) or 10A current (55°C of room temperature). The maximum short-time current lasts for 10s with 11A (70°C of room temperature) or 14A current (55°C of room temperature);
- > With load compensation function (LCF);
- > Droop function enables parallel generator to distribute reactive power automatically;
- With transmission line drop function;
- With 4-way programmable digital inputs, 2-way digital outputs, 1-way (-10-10)V analog voltage input, 1-way (0-600)Ω analog resistance input;
- > With CAN communication interface, following SAE J1939-75 protocol;
- > With Bluetooth communication interface that can be used to conduct parameter read and configuration and real-time data monitoring via mobile APP;
- > Adapt to 3P3W, 3P4W, 2P3W and 1P2W 50Hz/60Hz system;
- > Detect voltage harmonic THDu, current harmonic THDi, 1st-31st harmonic;
- Collect and display excitation voltage, current, generator voltage, current, frequency, power and other parameters;
- > Real-time data curve analysis can be realized by PC software or mobile APP;
- Protection and detection function: gen over/under voltage, over/under frequency, unbalanced voltage, large harmonic, gen unavailable, excitation over voltage, excitation overcurrent, rotating diode fault, etc.;
- If enabled, alarm detection function of gen overcurrent, short circuit, over power, reverse power, low power factor, loss of excitation, unbalanced current, current waveform distortion high, etc. is fitted

for current transformer;

- > All parameters can be configured through USB interface via PC or Bluetooth via mobile APP;
- > Suit for all types of brushless AC synchronous generators like PMG, AREP, SHUNT, etc.;
- With running data record function. Voltage regulator can record running data once per second and 8192 pieces in total that can be saved as CSV file via PC;
- > Event log, real-time clock, can loop record 999 events;
- Black box function enables to loop record 5 groups of fault alarm data, each group includes 60 pieces of detailed data from 50s before and 10s after fault alarm occurs;
- > Modular design, pluggable terminal, screw fixing mounting, compact structure and easy installation.

10

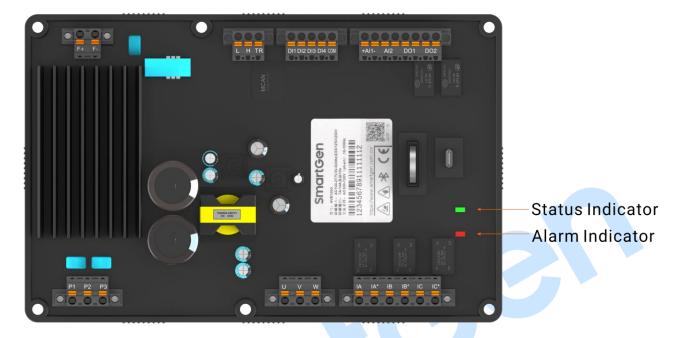

3 SPECIFICATION

Table 3 Technical Parameters

Items	Contents
	DC63V system:
	AC(100-139)V or DC125V;
	500W at 7A current, 720W at 10A current
Evolution Dowor	DC125V system:
Excitation Power	Single phase for AC(190-277)V, three phases for AC(190-260)V or
	DC250V
	920W at 7A current, 1320W at 10A current
	Frequency: (50-500)Hz or DC
Power Consumption	<40W
	Rated voltage: 63V or 125V
	Continuous current: 7A for 70°C of room temperature, 10A for 55°C of
Evolution Output Ourront	room temperature
Excitation Output Current	Maximum short-time current: 10s, 11A for 70°C of room temperature,
	14A for 55°C of room temperature
	Coil resistance>4Ω
AC Voltage	Accuracy: 0.25%THDu<5%
	Line voltage
	Range: AC30V - AC720V (ph- ph)
	Resolution: 0.1V
	Accuracy: 0.2%
	AC frequency
	Range: 10Hz - 100Hz
AC Sampling Voltage	Resolution: 0.01Hz
	Accuracy: 0.1Hz
	AC current
	Rated: 5A or 1A
	Range: 0A - 15A (rated 5A) or 0A - 3A (rated 1A)
	Resolution: 0.1A
	Accuracy: 0.5%
	Resistance input
	Range: 0Ω - 6000Ω
	Resolution: 0.1
Analog Input	Accuracy: 1Ω (below 2000Ω)
Analog input	Voltage input
	Range: -10V - 10V
	Resolution: 0.001V
	Accuracy: 1%
Digital Output 1-2	5A AC250V volt-free output (relay output)
Digital Input 1-4	Low on-threshold voltage 1.2V

Items	Contents				
	Isolated, using Belden 9841 cable or equivalent				
CAN Interface	Communication distance and baud rate refer to Table 6 Relation				
	Between CAN-bus Transmission Distance and Baud Rate				
Bluetooth Interface	Bluetooth 4.0, max 50m communication distance				
Vibration	(8-2000)Hz: 5g				
VIDIATION	IEC 60068-2-6				
	50g, 11ms, half-sine, complete shock test from three directions, and 18				
Shock	shocks for each test				
	IEC 60068-2-27				
Dump	25g, 16ms, half-sine				
Bump	IEC 60255-21-2				
Overall Dimension	239mm x 154mm x 71mm				
Working Temperature	(-40~+70)°C				
Working Humidity	(20~93)%RH				
Storage Temperature	(-40~+80)°C				
Weight	1.45kg				

- 4 OPERATION
- 4.1 ILLUSTRATION
- 4.1.1 INDICATOR AND WIRING

Table 1 Indication

Table 4 Indicator Description

Indicator	Function	Description
		When there is critical alarm, it flashes rapidly (5 times/s);
Alarm (red)	Alarm	When there is general alarm, it flashes slowly (once/s);
		When there is no alarm, it extinguishes.
Ctatus (groop)	Ctatua	When power is normal, it is always illuminated;
Status (green)	Status	When warning or fault is detected, it flashes slowly (once/s).

Table 5 Terminal Wiring Description

No.	Function	Size	Remark		
F+	Positive Pole	1.5mm ²	Excitation output		
F-	Negative Pole	1.5mm ²	Excitation output.		
L	CAN L	0.5mm ²	120 Ω shielded line is recommended to use with its		
Н	CAN H	0.5mm ²	single end grounded. Short connect TR and H terminals		
TR	CAN TR	/	and then connect 120Ω resistor. Transmission distance refers to Table 6 Relation Between CAN-bus Transmission Distance and Baud Rate.		
D1	Digital Input 1	1.0mm ²	Active for COM connected.		
D2	Digital Input 2	1.0mm ²	Active for COM connected.		
D3	Digital Input 3	1.0mm ²	Active for COM connected.		

No.	Function	Size	Remark			
D4	Digital Input 4	1.0mm ²	Active for COM connected.			
COM	Digital Input COM	1.0mm ²	COM of digital inputs.			
Al1	+ Analog Input 1	1.0mm ²	Voltage type analog input.			
AIT	- Analog input i	1.0mm ²				
AI2	Analog Input 2	1.0mm ²	Resistance type analog input.			
AIZ		1.0mm ²				
DI1	Digital Output 1	1.5mm ²	5A AC250V volt-free output (relay output).			
		1.5mm ²	SA AC250V Volt-free output (relay output).			
DI2	Digital Output 2	1.5mm ²	5A AC250V volt-free output (relay output).			
DIZ	Digital Output 2	1.5mm ²	SA AC250V Volt-free output (relay output).			
P1	Power Input P1	1.5mm ²				
P2	Power Input P2	1.5mm ²	Excitation power input.			
P3	Power Input P3	1.5mm ²				
U	Gen U-phase Monitoring	1.0mm ²	Connect to gen output U phase (2A fuse is recommended).			
V	Gen V-phase Monitoring	1.0mm ²	Connect to gen output V phase (2A fuse is recommended).			
W	Gen W-phase Monitoring	1.0mm ²	Connect to gen output W phase (2A fuse is recommended).			
IA		1.5mm ²	Externally connect to secondary coil of current			
IA*	CT A-phase Monitoring	1.5mm ²	transformer (rated 5A or 1A).			
IB	CT B-phase Monitoring	1.5mm ²	Externally connect to secondary coil of current			
IB*	CT B-phase Monitoring	1.5mm ²	transformer (rated 5A or 1A).			
IC	CT C phase Menitoring	1.5mm ²	Externally connect to secondary coil of current			
IC*	CT C-phase Monitoring	1.5mm ²	transformer (rated 5A or 1A).			
	USB	/	TYPE-C, can supply power for the module and parameter configuration, real-time data monitoring and program upgrade can be realized via PC software.			
	Bluetooth	/	Support phone to do parameter configuration, real-time data monitoring via Bluetooth.			

ANOTE: USB interface of the voltage regulator can directly connect PC to do parameter configuration in standby and running status.

ACAUTION: Do not upgrade the program while the generator is running.

4.1.2 EXCITATION POWER INPUT

Excitation power supplies power for excitation control output and voltage regulator.

Its input terminals are P1, P2, P3, and can be powered by PMG, AREP and SHUNT.

It can be powered by single phase or 3P3W. When single phase is applied, it can be powered by input terminals of anyt two excitation powers.

AC supply range: AC100V-AC277V.

Recommended min remanence voltage is AC6V.

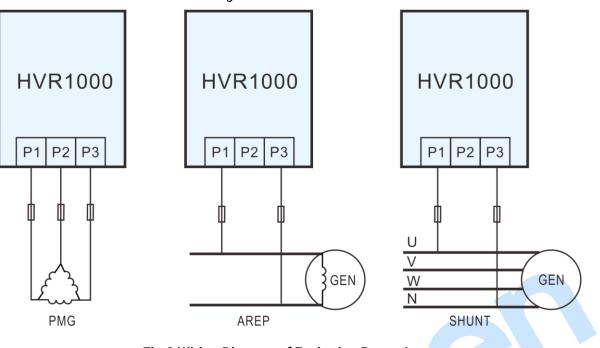


Fig.2 Wiring Diagram of Excitation Power Input

4.1.3 EXCITATION OUTPUT

Excitation output provides DC excitation power for exciter. Its output terminals are F+, F-.

It can provide 7A continuous working current at 70°C room temperature; in short circuit, maximum field current is 11A that can be provided for 10s. It can provide 10A continuous working current at 55°C room temperature; in short circuit, maximum field current is 14A that can be provided for 10s.

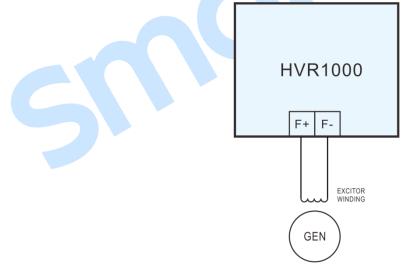


Fig.3 Wiring Diagram of Excitation Output

4.1.4 GEN VOLTAGE DETECTION INPUT

Voltage detection terminals of 3-phase generator are U, V, W.

Its AC input range is AC30V - AC720V (ph- ph).

It can set wiring method to 3-phase (U-V-W), 2-phase (V-W), 2-phase (U-W) through "System Setting" -> "AC Input Sampling".

When AVR mode and 3-phase are enabled, gen voltage is the average value of 3-phase line voltage.

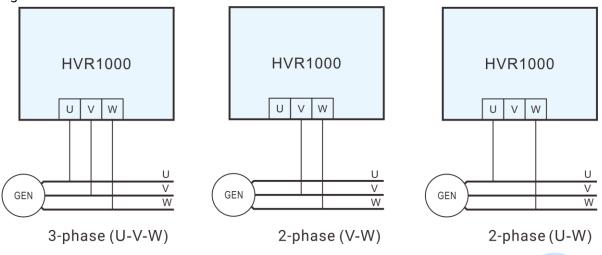
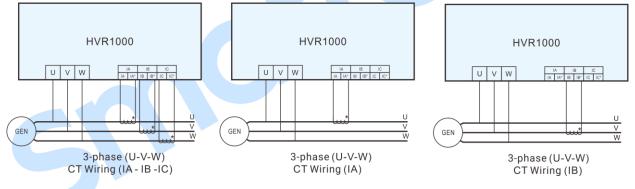


Fig.4 Wiring Diagram of Gen Voltage Detection


4.1.5 GEN CURRENT DETECTION

Gen 3-phase current detection terminals are IA(IA, IA*), IB(IB, IB*), IC(IC, IC*).

Rated current value of CT's secondary side can be set as 5A or 1A, detection range for 5A: 0A - 15A; detection range for 1A: 0A - 3A.

CT's wiring method can be: IA-IB-IC, IA, IB.

When gen voltage detection is set to 3P3W (U-V-W), CT wiring can be IA-IB-IC, IA, IB.

When gen voltage detection is set to 2-phase (V-W), CT wiring is fixed as IA.

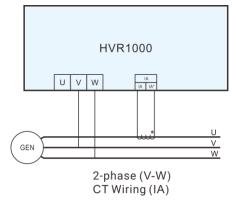


Fig.6 CT Wiring Diagram of 2-phase (V-W)

When gen voltage detection is set to 1P2W (U-W), CT wiring is fixed as IB.

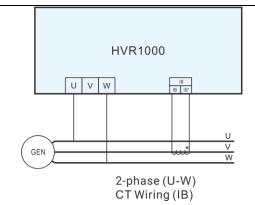


Fig.7 CT Wiring Diagram of 2-phase (U-W)

4.1.6 ANALOG INPUT

There are two analog inputs, terminal of analog input 1 (voltage type) is Al1, terminal of analog input 2 (resistance type) is Al2.

Input range of AI1 is (-10-10)V, input range of AI2 is $(0-6000)\Omega$, $(2-5)K\Omega$ potentiometer is recommended.

Analog inputs are all non-isolated.

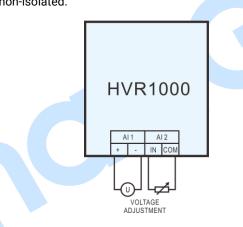


Fig.8 Wiring Diagram of Analog Input

4.1.7 DIGITAL INPUT

There are four digital inputs, all inputs are active for COM connected.

ANOTE: Low on-threshold voltage is 1.6V, off-threshold voltage is 1.8V.

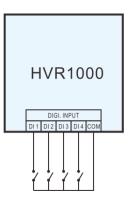
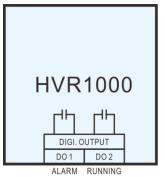



Fig.9 Wiring Diagram of Digital Input

4.1.8 DIGITAL OUTPUT

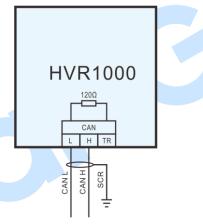
There are two volt-free relay outputs. Relay capacity is 5A AC250V.

Fig.10 Wiring Diagram of Digital Output

4.1.9 CAN COMMUNICATION INTERFACE

There are one CAN communication interface, communication follows SAE J1939-75 protocol.

 120Ω shielded line is recommended to use with its single end grounded. Short connect TR and H terminals and then connect 120Ω resistor.



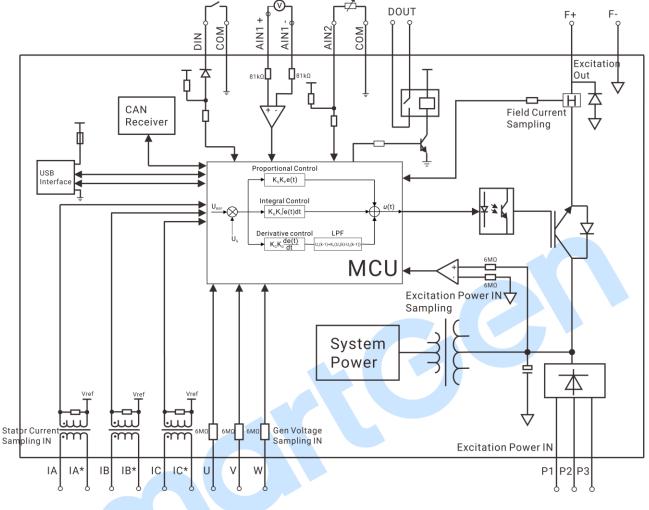

Fig.11 Wiring Diagram of CAN Communication

Table 6 Relation Between CAN-bus Transmission Distance and Baud Rate

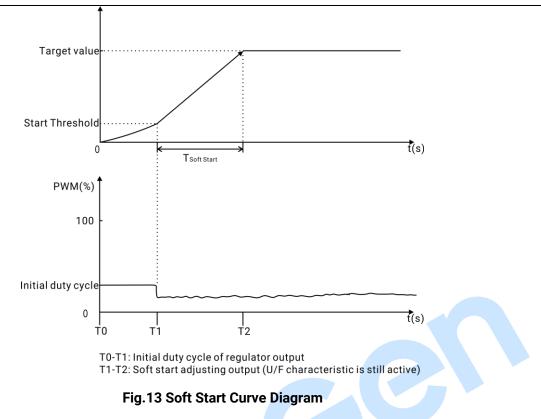
No.	Comm. Distance (m)	Max Baud Rate (bps)
1	700	50k (Terminal resistor is 120Ω)
2	280	125k (Terminal resistor is 120Ω)
3	140	250k (Terminal resistor is 120Ω)
4	70	500k (Terminal resistor is 120Ω)

4.2 EXCITATION REGULATION

4.2.1 SCHEMATIC DIAGRAM

4.2.2 START

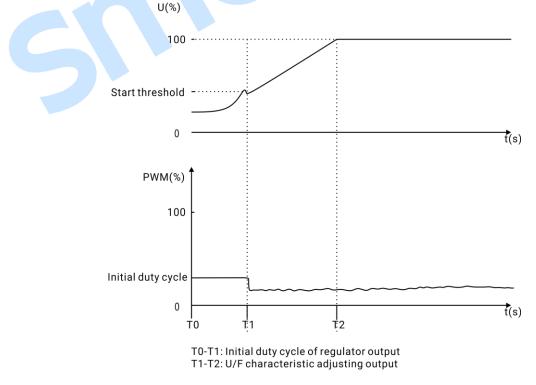
Soft Start


This function can control the change rate of generator terminal voltage and field current when the generator starts in automatic voltage regulation (AVR) and field current regulation (FCR) modes, as shown in soft start curve diagram.

Soft start time: (0.1~120.0)s, default 3s, it is the time from soft starting to reaching 100% target value.

Start threshold: (0.1~100.0)%, default 20%, when generator terminal voltage or field current reaches start threshold, it starts to regulate automatically.

Initial duty cycle: (0~100.0)%, default 0, excitation regulates initial PWM value.


U/F characteristic of the generator is still active and has priority to control generator voltage during soft starting.

Threshold Start

This function is applicable to automatic voltage regulation (AVR) mode. The voltage regulator outputs setting initial duty cycle. When the voltage regulator detects that generator terminal voltage is greater than the setting start threshold, voltage regulation takes effect. The target voltage is adjusted according to set U/F characteristic.

Excitation stop condition: when generator frequency is lower than set value, and power input voltage is lower than set supply voltage, delay the time and stop the excitation.

4.2.3 AUTOMATIC VOLTAGE REGULATION (AVR)

4.2.3.1 ILLUSTRATION

This mode can be active via parameter configuration or AVR mode input.

There are 5 methods to adjust AVR output value:

- 1. Set AVR output voltage (fixed value);
- 2. Adjust output voltage via digital UP input or DOWN input;
- 3. Adjust output voltage via changing analog input voltage (-10-10)V;
- 4. Adjust output voltage via changing analog resistance (0-6000)Ω;
- 5. Adjust output voltage via CAN communication.

The auxiliary regulation output voltage is the average value of regulation deviation sum of the above regulation methods. If there are three ways to regulate, the regulation deviation value is equal to the sum of three regulation deviations divided by 3.

For example:						
Gen. Rated Voltage	400 🛓 V	0			400V	(30-30000)\
AVR Output Volt	100.0 🔹 %		0		100.0%(400.0V) (0-200.0)%
AVR Fine Tuning S	et					
Lower Limit	-10.0 🚔 %			-0	-10.0%	(-50.0-(-0.1))%
Upper Limit	10.0 🚔 %				10.0%	(0.1-50.0)%
Digital Fine Tur	ning Enable					
Adjustment Speed	1.0 🐳 %/s					
🗌 Voltage Fine Tur	ning Enable					
Lower Limit Value	0.0		0			
Upper Limit Value	5.0 * V					
Resistance Fine	Tuning Enable					
Lower Limit Value	0 🔹 0	0				
Upper Limit Value	6000 🌩 Ω			0		

1. When voltage is fine-tuned to 1.0V:

Voltage fine-tuning deviation EV = -10%+ (10% - -10%)*1.0/(5.0-0) = -6.0%;

2. When resistance is fine-tuned to 1500Ω :

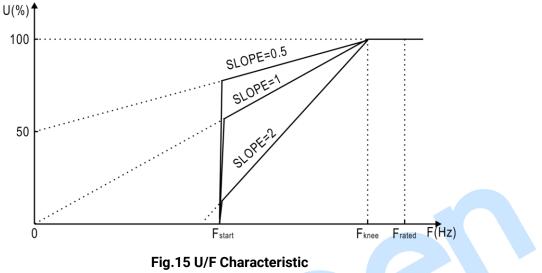
Resistance fine-tuning deviation ER = -10%+ (10% - -10%)*1500/(5000-0)= -4.0%;

3. When CAN receives data of message ID 0x0C100211: 58 1B 00 00 00 00 00:

0x1B58 is concerted to decimal 7000, 7000*(0.01%) = 70.00%;

CAN fine-tuning deviation EC = -10%+ (10% - -10%)*70.00% = 4.0%;

Total deviation ET = (EV+ER+EC)/3 = -2.0%;

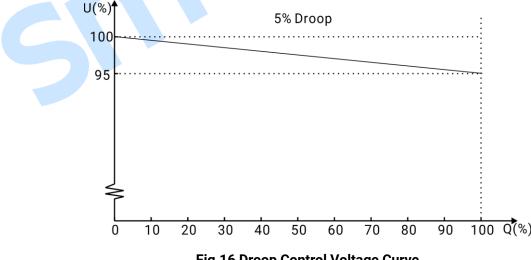

Target voltage = 400*(100%+ET)=392V.

4.2.3.2 U/F SLOP CHARACTERISTIC

Start frequency (F_{start}): (10.0~100.0)%, default 10.0%.

Knee frequency (F_{knee}): (70.0~100.0)%, default 96.0%.

U/F slope (SLOPE): (0.5~5.0), default 1.0. Change the rated frequency by 1%, change the rated voltage by SLOPE%. U/F characteristic diagram is shown as below.

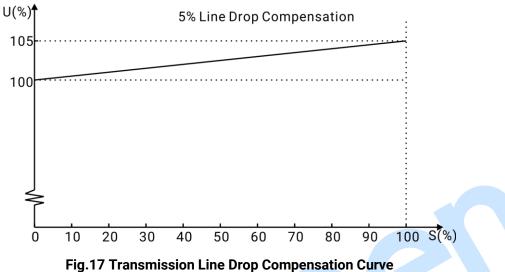


4.2.3.3 DROOP CONTROL

The parallel running generator can automatically distribute reactive load via droop function. Droop range: (0.1~10.0)%, default 3.0%.

When reactive power is 0%, target voltage keeps unchanged; when it is 100%, target voltage decreases the set compensation voltage.

For example: set droop to 5%, rated voltage to 400V, when reactive is 0%, target voltage is 400V; when reactive power is 100%, target voltage is 400*95%=380V. The droop control voltage curve is shown as below.


4.2.3.4 TRANSMISSION LINE DROP COMPENSATION

Transmission line drop compensation range: (0.0~20.0)%, default 3.0%.

When apparent power is 0%, traget voltage keeps unchanged; when it is 100%, target voltage increases the set compensation voltage.

For example: set transmission line drop compensation to 5%, rated voltage to 400V, when apparent power is 0%, target voltage is 400V; when apparent power is 100%, target voltage is 400*105%=420V. The transmission line drop compensation voltage curve is shown as below.

This function is applicable to occasions that compensation line is long and large line voltage drop caused by load current increase.

4.2.3.5 LOAD COMPENSATION

Drop value (Ulcf): (70.0~100.0)%, default 90.0%.

Continuous delay (T_{lcf}): (0~10000)ms, default 1000ms.

Rise slope (T_{rise}) : $(0.0 \sim 10.0)$ %/s, default 0.2s/%.

When gen frequency drops to knee frequency (F_{knee}), target voltage drops to set voltage (U_{lcf}), it instantly reduces engine output power. When the frequency begins to rise, target voltage gradually rises according to T_{rise} setting, the unit's sudden loading performance is improved. When T_{lcf} delay is over, the load compensation is completed. U/F characteristic of the generator is still active and has priority to control generator voltage during load compensation.

This function is applicable to the occasion that sudden loading performance improvement by reducing the generator terminal voltage and output power in sudden loading.

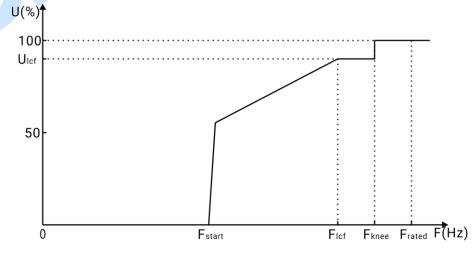
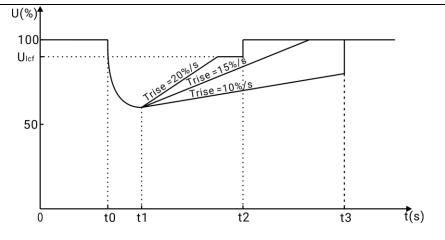



Fig.18 U/F Curve During Load Compensation

t0: Gen frequency < load compensation frequency(F<F_{lcf}) t1: Gen frequency > load compensation frequency(F>F_{lcf}) t2: Gen frequency > knee frequency (F>F_{knee}) t3: End of duration (t3=t1+T_{lcf})

Fig.19 Voltage/Time Curve During Load Compensation

4.2.3.6 RUNNING PROCESS

- a) When generator is running, voltage regulator outputs initial duty cycle; when generator terminal voltage is higher than set start threshold voltage, soft starting begins for voltage regulation and excitation output is gradually increased;
- b) After soft starting, regulate excitation output according to U/F curve; when gen frequency is higher than knee frequency, voltage regulator is adjusted with the rated voltage as the target;
- c) When generator stops, excitation output is gradually stopping,; when gen frequency is lower than excitation stopping frequency, this running is finished;
- d) When voltage regulator detects fault shutdown alarm, excitation output stops.

4.2.4 FIELD CURRENT REGULATION MODE (FCR)

This mode can be active via parameter configuration or FCR mode input.

FCR is prior to other regulation modes.

FCR can directly control filed current output size.

There are 5 methods to adjust FCR output value:

- 1. Set FCR current output (fixed value);
- 2. Adjust output field current via digital UP input or DOWN input;
- 3. Adjust output field current via changing analog input voltage (-10-10)V;
- 4. Set field current range, enable analog resistance fine-tuning, then adjust output field current via changing analog resistance (0-6000)Ω;
- 5. Adjust output field current via CAN communication.

The auxiliary regulation output field current is the average value of the regulation deviation sum of the above regulation modes. If there are two ways to regulate, the regulation deviation value is equal to the sum of two regulation deviations divided by 2.

Excitation Curr				
Rated Current	5.0 🗘 A	0	5.0A	(0-10.0)A

Excitation Current	0.1 🖨 A	0		0.1A	(0-10.0)A
CR Fine Tuning S	iet				
Lower Limit	-100.0 🚔 %	0		-100.0%	(-100.0-0)%
Upper Limit	100.0 🚔 %		-0	100.0%	(0-200.0)%
Digital Fine Tu	ning Enable				
Adjustment Speed	1.0 •	-0			
Voltage Fine Tu	ning Enable				
Lover Limit Value	0.0 × V		0		
	5.0 ÷				
Resistance Fine	Tuning Enable				
	0 🗘 🖸	0			
Upper Limit Value	6000 🌲 🛛				

When voltage is fine-tuned to 4.0V:

Voltage fine-tuning deviation EV = -50%+ (50% - -50%)*4.0/(10.0-0) = -10.0%;

2. When resistance is fine-tuned to 1000Ω :

Resistance fine-tuning deviation ER = -50%+ (50% - -50%)*1000/(6000-1000)= -30.0%;

3. Total deviation ET = (EV+ER)/2= -20.0%;

Target field current = 1.2+1.0*ET= 1.0A.

4.2.5 REACTIVE POWER REGULATION MODE (VAR)

This mode can be active via parameter configuration or VAR mode input.

It is applied to occasion that generator outputs fixed reactive power when generator and mains or large-capacity busbar are in parallel.

Under this mode, current transformer needs to be enabled to directly control generator to output reactive power for the load.

There are 5 regulation methods:

- 1. Set reactive power (fixed value);
- 2. Adjust output reactive power via digital UP input or DOWN input;
- 3. Adjust output reactive power via changing analog input voltage (-10-10)V;
- 4. Adjust output reactive power via changing analog resistance $(0-6000)\Omega$;
- 5. Adjust output reactive power via CAN communication.

The auxiliary regulation output reactive power is the average value of the regulation deviation sum of the above regulation modes. If there are two ways to regulate, the regulation deviation value is equal to the sum of two regulation deviations divided by 2.

Gen. Rated Power(var)	208	🚖 kvar	-0	20	8kvar	(0-6000)kvar	
-----------------------	-----	--------	----	----	-------	--------------	--

	0.0	* 96				
AR Fine Tuning	Set					
	-100.0	- 🐳 %				
Upper Limit	100.0	◆ 1%				
Digital Fine						
	d 1.0	* %/S	-0			
Lower Limit Val	0.0	* V				
Upper Limit Val	de 5.0	* V		0		
Lower Limit Val	0					
Upper Limit Val	6000	0				

1. When voltage is fine-tuned to 4.0V:

Voltage fine-tuning deviation EV = $-20\% + (20\% - -20\%) \times 4.0/(5.0-0) = 12.0\%$;

2. When resistance is fine-tuned to 3000Ω :

Resistance fine-tuning deviation ER = -20%+ (20% - -20%)*3000/(6000-1000)= 4.0%;

3. Total deviation ET = (EV+ER)/2= 8.0%;

Target reactive power = 210*(100%+ET)= 226.8kvar.

4.2.6 POWER FACTOR REGULATION MODE (PF)

This mode can be active via parameter configuration or PF mode input port.

It is applied to occasion that generator stabilizes to set power factor when generator and mains or large-capacity busbar are in parallel.

Under this mode, current transformer needs to be enabled to directly control generator power factor.

There are 5 regulation methods:

- 1. Set power factor (fixed value);
- 2. Adjust power factor via digital UP input or DOWN input;
- 3. Adjust power factor via changing analog input voltage (-10-10)V;
- 4. Adjust power factor via changing analog resistance $(0-6000)\Omega$;
- 5. Adjust power factor via CAN communication.

When digital regulation is chosen, output power factor is the sum of set value and digital regulation deviation.

When analog resistance or voltage or CAN communication regulation is chosen, output power factor is the average value of the sum of regulation modes's regulation value. If there are two ways to regulate, the regulation deviation value is equal to the sum of two regulation deviations divided by 2.

	0.80L	A V				
F Fine Tuning	Set					
Lower Limit	1.00	A V		-0		
Upper Limit	1.00	A V			1.00	
	0.01	1s	0—			
Voltage Fine 7						
Lower Limit Val	1e 0.0	×V		0		
Upper Limit Val	ae 5.0	× V				
Lower Limit Val	10 O	A D				
Upper Limit Val	ae 6000	÷ 0				

1. When voltage is fine-tuned to 4.0V:

Voltage fine-tuning deviation TV = 0.50L+ (1.00 - 0.50L)*4.0/(10.0-0) = 0.70L;

2. When resistance is fine-tuned to 1000Ω :

Resistance fine-tuning deviation TR = 0.50L+ (1.00 - 0.50L)*1000/(6000-1000)= 0.60L;

3. Target power factor T = (TV+TR)/2 = 0.65L.

5 PROTECTION AND LIMIT

5.1 WARNING ALARM

When the regulator detects the warning signal, it only sends warning and not stop the excitation output.

Table 7 Warning Alarm

No.	Warning	Description				
1	Gen Over Voltage	When gen over voltage alarm detection is enabled and regulator detects that gen terminal voltage is higher than threshold, it will send warning alarm signal. It is always detected.				
2	Gen Under Voltage	When gen under voltage alarm detection is enabled and regulator detects that gen terminal voltage is lower than threshold, it will send warning alarm signal. It is detected after gen frequency is higher than knee frequency firstly.				
3	Gen Over Frequency	When gen over frequency alarm detection is enabled and regulator detects that gen frequency is higher than threshold, it will send warning alarm signal. It is always detected.				
4	Gen Under Frequency	When gen under frequency alarm detection is enabled and regulato detects that gen frequency is lower than threshold, it will send warnin alarm signal. It is detected after gen frequency is higher than knee frequency firstly.				
5	No Power Generation	When no power generation alarm detection is enabled and regulator detects that gen voltage and frequency are both 0, it will send warning alarm signal. It is detected after gen frequency is higher than knee frequency firstly or field current is higher that threshold.				
6	Excitation Over Current	When over-excitation limit is enabled and regulator detects that field current is higher than threshold 1 or over-excitation limit is active and action is warning, it will send warning alarm signal. It is always detected.				
7	Excitation Over Voltage	When excitation over voltage detection is enabled and regulator detects that excitation voltage is higher than threshold, it will send warning alarm signal. It is always detected.				
8	Large THDu	When voltage waveform distortion detection is enabled and regulator detects that gen THDu is higher than threshold, it will send warning alarm signal. It is always detected.				
9	Unbalanced Voltage	When unbalanced voltage detection is enabled and regulator detects that unbalanced voltage is higher than threshold, it will send warning alarm signal.				

No.	Warning	Description					
		It is always detected.					
10	Gen Loss of Phase	When gen loss of phase detection is enabled and regulator detects that gen phase is lost, it will send warning alarm signal. It is detected when gen voltage is higher than 50V.					
11	Gen Reverse Phase Sequence	When gen reverse phase sequence detection is enabled and regulator detects that gen phase sequence is reverse, it will send warning alarm signal. It is detected when gen voltage is higher than 50V.					
12	Low Power Factor	When low power factor detection is enabled and regulator detects that gen power factor is lower than threshold, it will send warning alarm signal. It is always detected.					
13	Stator Over Current	When stator current limit is enabled and regulator detects that stator current is higher than over current alarm 1 threshold or stator current limit is active and action is warning, it will send warning alarm signal. It is always detected.					
14	Over Power	When over power alarm detection is enabled and regulator detects that gen power is higher than threshold, it will send warning alarm signal. It is always detected.					
15	Reverse Power	When reverse power alarm detection is enabled and regulator detects that gen reverse power (power is negative) is higher than threshold, it will send warning alarm signal. It is always detected.					
16	Loss of Excitation	When loss of excitation alarm detection is enabled and regulator detects that gen reactive power (power is negative) is higher than threshold, it will send warning alarm signal. It is always detected.					
17	Unbalanced Current	When unbalanced current detection is enabled and regulator detects that unbalanced current is higher than threshold, it will send warning alarm signal. It is always detected.					
18	Large THDi	When current waveform distortion detection is enabled and regulator detects that stator THDi is higher than threshold, it will send warning alarm signal. It is always detected.					
19	Short Circuit	When short circuit detection is enabled and regulator detects that stator current is higher than threshold, it will send warning alarm signal. It is always detected.					
20	Rotating Diode Open	When rotating diode open circuit detection is enabled and regulator detects that field current harmonic is higher than threshold (default 5%), it will send warning alarm signal. It is always detected.					
21	Rotating Diode Short	When rotating diode short circuit detection is enabled and regulator detects that field current harmonic is higher than threshold (default 5%), it					

No.	Warning	Description			
		will send warning alarm signal.			
		It is always detected.			

NOTE: When poles ratio (exciter poles/generator poles) is not equal to 0, field current harmonic is the sum of two harmonic values whose pole ratio is close to each other; when it is equal to 0, field current harmonic is the sum of each harmonic value. For example, the pole ratio of exciter with 14 poles and generator with 4 poles is 2.33, which is the percentage sum of harmonic 2 and 3.

5.2 FAULT ALARM

When the regulator detects the fault alarm signal, it will send signal to stop excitation output and display alarm types.

No.	Fault	Description				
1	Gen Over Voltage	When gen over voltage alarm detection is enabled and regulator detects that gen terminal voltage is higher than threshold, it will send fault alarm signal. It is always detected.				
2	Gen Under Voltage	When gen under voltage alarm detection is enabled and regulator detects that gen terminal voltage is lower than threshold, it will send fault alarm signal. It is detected after gen frequency is higher than knee frequency firstly.				
3	Gen Over Frequency	When gen over frequency alarm detection is enabled and regulator detects that gen frequency is higher than threshold, it will send fault alarm signal. It is always detected.				
4	Gen Under Frequency	When gen under frequency alarm detection is enabled and regulator detects that gen frequency is lower than threshold, it will send fault alarm signal. It is detected after gen frequency is higher than knee frequency firstly.				
5	No Power Generation	When no power generation alarm detection is enabled and regulator detects that gen voltage and frequency are both 0, it will send fault alarm signal. It is detected after gen frequency is higher than knee frequency firstly or field current is higher that threshold.				
6	Excitation Over Current	When over-excitation limit is enabled, over-excitation limit is active and action is shutdown, it will send fault alarm signal. It is always detected.				
7	Excitation Over Voltage	When excitation over voltage detection is enabled and regulator detects that excitation voltage is higher than threshold, it will send fault alarm signal. It is always detected.				
8	Unbalanced Voltage	When unbalanced voltage detection is enabled and regulator detects that				

Table 8 Fault Alarm

No.	Fault	Description
		unbalanced voltage is higher than threshold, it will send fault alarm signal.
		It is always detected.
		When voltage waveform distortion detection is enabled and regulator
9	Large THDu	detects that THDu is higher than threshold, it will send fault alarm signal.
		It is always detected.
		When over power detection is enabled and regulator detects that load
10	Over Power	power (power is positive) is higher than threshold, it will send fault alarm
10	Over Power	signal.
		It is always detected.
		When reverse power alarm detection is enabled and regulator detects that
11	Reverse Power	load reverse power (power is negative) is higher than threshold, it will
	Reverse Power	send fault alarm signal.
		It is always detected.
		When low power factor detection is enabled and regulator detects that
12	Low Power Factor	gen power factor is lower than threshold, it will send fault alarm signal.
		It is always detected.
		When stator current limit is enabled and regulator detects that stator
13	Stator Over Current	current is higher than over current alarm 1 threshold or stator current limit
15		is active and action is warning, it will send fault alarm signal.
		It is always detected.
		When current waveform distortion detection is enabled and regulator
14	Large THDi	detects that THDi is higher than threshold, it will send fault alarm signal.
		It is always detected.
		When unbalanced current detection is enabled and regulator detects that
15	Unbalanced Current	unbalanced current is higher than threshold, it will send fault alarm signal.
		It is always detected.
		When short circuit detection is enabled and regulator detects that load
16	Short Circuit	current is higher than threshold, it will send fault alarm signal.
		It is always detected.
		When loss of excitation alarm detection is enabled and regulator detects
17	Loss of Excitation	that gen reactive power (power is negative) is higher than threshold, it will
.,		send fault alarm signal.
		It is always detected.
		When rotating diode open circuit detection is enabled and regulator
18	Rotating Diode Open	detects that field current harmonic is higher than threshold, it will send
	notating bload open	fault alarm signal.
		It is always detected.
		When rotating diode short circuit detection is enabled and regulator
19	Rotating Diode Short	detects that field current harmonic is higher than threshold, it will send
	notating prode onort	fault alarm signal.
		It is always detected.

5.3 UNDER EXCITATION LIMIT

Generator will be out of step due to excessive reduction of field current, which will cause the generator end overheating. Under excitation limit can be realized via enabling it. The under excitation limit curve can be set to 5 points, and the percentage of active power and reactive power can be set according to generator power characteristic curve, as shown in the following diagram.

Under excitation limit is active in VAR and PF regulation modes. When the limit is active, voltage regulator will limit the field current to make generator run in the limits of power characteristic curve and thermal stability limit line.

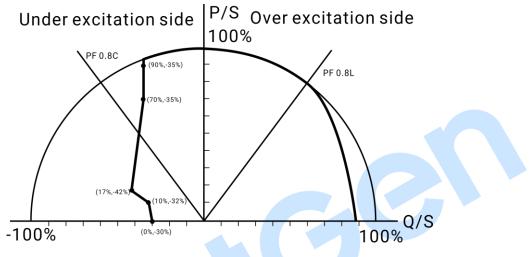


Fig.20 Under Excitation Limit Curve

5.4 OVER EXCITATION LIMIT

It will cause excitation winding overheating when generator runs in the over excitation range of power characteristic curve. Therefore, generator needs to recover system voltage to provide more reactive power to it, that is, forced excitation capability. There are 2 excitation overcurrent threshold can be set for over excitation limit, overcurrent 2 threshold is forced excitation limit value, overcurrent 1 threshold is long-time allowing field current. The regulator can limit forced field current instantly. When forced excitation limit is active, field current will be limited less than 0.95 times the excitation overcurrent 1 threshold and reaches over-excitation inverse time, over-excitation limit of field current will be active and then field current will be limited less than 0.95 times the excitation limit of field current 1 threshold, waiting for accumulated heat to release.

Action can be set when over-excitation limit is active, regulator will issue warning or fault alarm after delaying set over-excitation limit time.

Calculation method of over-excitation inverse time:

Determine inverse time limit curve via excitation overcurrent 1 threshold, overcurrent 2 threshold.

$$t = \frac{I_{FEL}^{2} - I_{OEL}^{2}}{I_{E}^{2} - I_{OEL}^{2}}Tq$$

The calculation formula is:

Definition: IFEL (forced excitation limit value) --- excitation overcurrent 2 threshold

T_q (forced excitation allowing time) --- overcurrent delay

IOEL (over-excitation limit value) --- excitation overcurrent 1 threshold

I_E --- actual field current t --- calculation value of inverse time

Over-excitation limiting method:

Over-excitation limiting is carried out by comparing the calculated heat accumulation $B = \int (I_E^2 - I_{OEL}^2) dt$ with the maximum allowing heat accumulation $B_0 = (I_{FEL}^2 - I_{OEL}^2) Tq$. When heat accumulation $B \ge B0$ or accumulation time of over-excitation reaches the maximum delay time, over-excitation limit is active.

Heat accumulation calculation:

- 1) B=0, I_E≤I_{OEL}, over-excitation never occurred, no overheating accumulated;
- 2) B=0, $I_E > I_{OEL}$, over-excitation never occurred, current over-excitation, heat accumulation: B = $B + (I_E^2 I_{OEL}^2) \land t$;
- 3) B>0, $I_E > I_{OEL}$, over-excitation never occurred, current over-excitation, heat accumulation: B = $B + (I_E^{2} I_{OEL}^{2})_{\Delta} t$;
- B>0, I_E<I_{DEL}, over-excitation has occurred, there is no over-excitation at present, and the heat is accumulated in the reverse direction: B = B+(I_E²-I_{DEL}²)_△t, that is, the heat release process. When B≤0, the calculation is cut off, B=0.

When over-excitation limit is active, field current will be limited less than 0.95 times the excitation overcurrent 1 threshold, heat will be released until it is over (B=0), and forced excitation again is not allowed during this process.

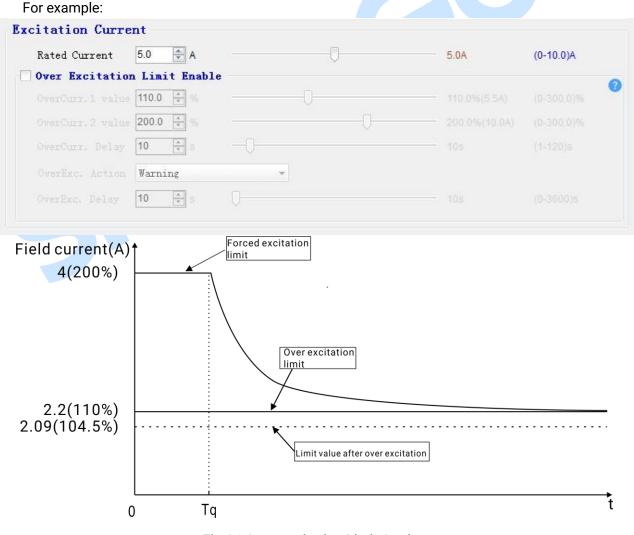


Fig.21 Over-excitation Limit Setting

5.5 STATOR CURRENT LIMIT

When stator current exceeds the overcurrent 1 threshold in generator running, the stator current inverse time is calculated. When stator current reaches inverse time limit, it will be limited to 0.95 times overcurrent 1 threshold. When stator current limit is active, overcurrent again is allowed after waiting for the internal heat release of the stator. The stator current limiting curve is determined by two points.

Stator current limit is active in AVR mode.

Action can be set when stator current limit is active, regulator will issue warning or fault alarm after delaying set limit action time.

The calculation method of stator current inverse time is same as over-excitation limit inverse time.

The calculation formula is:
$$t_{g} = \frac{I_{eq}^{2} - I_{gL}^{2}}{I_{L}^{2} - I_{gL}^{2}} T_{eq}$$

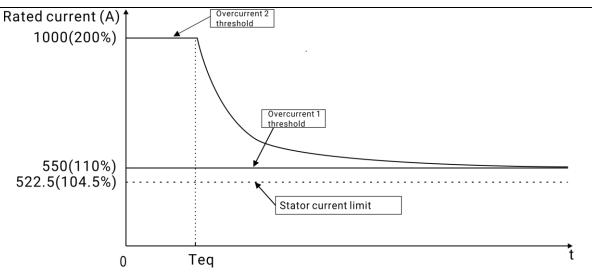
Definition: leq (equivalent stator current) --- overcurrent 2 threshold

T_{eq} (allowing delay under equivalent stator current) --- overcurrent alarm delay

IgL (max long time allowing stator current) --- overcurrent 1 threshold

 I_L --- actual stator current t_g --- calculation value of inverse time

Stator current limiting method:


Stator current limiting is carried out by comparing comparing the calculated heat accumulation $B = \int (I_{L}^2 - I_{gL}^2) dt$ with the maximum allowed heat accumulation $B_0 = (I_{eq}^2 - I_{gL}^2) T_{eq}$. When heat accumulation B≥B0 or accumulation time of overcurrent reaches the maximum delay time, stator current limit is active.

Heat accumulation calculation:

- 1) B=0, $I_{L} \leq I_{gL}$, overcurrent never occurred, no overheating accumulated;
- B=0, I_L>I_{gL}, overcurrent never occurred, current overcurrent, heat accumulation: B = B+(I_L²−I_{gL}²)_Δt;
- B>0, I_L>I_{gL}, over-excitation has occurred, current over-excitation, heat accumulation: B = B+(I_L² −I_{gL}²) Δt;
- B>0, I_L<I_{gL}, over-excitation has occurred, there is no over-excitation at present, and the heat is accumulated in the reverse direction: B = B+(I_L² −I_{gL}²) △t, that is, the heat release process. When B≤0, the calculation is cut off, B=0.

When stator current limit is active, stator current will be limited less than 0.95 times the overcurrent 1 threshold, heat will be released until it is over (B=0), and overcurrent again is not allowed during this process.

Gen. Rated Curren	t 500 🚔 A	-0			- 500A	(5-6000)	A
🗇 Stator Curre	ent Limit —						
OverCurr.1	110.0 💠 %		-0				
OverCurr. 2	200.0 🐳 %			-0			
OverCurr.Delay	10 ()	-0			10s		(1-120)s
Limit Action	Warning	*					
Limit Delay	10 <u>*</u> S	0					

30

6 PARAMETER RANGE AND DEFINITION

6.1 PARAMETER SETTING CONTENT AND RANGE

Table 9 Parameter Setting Content and Range

No.	ltem		Range	Default	Description
Module	Setting				
1	Password Setting		(0-65535)	00318	
2	Module Addr	ess	(1-254)	17	Source address of CAN request.
3	Alarm Data F	Record Interval	(0-60.0) s	0.1	
4	J1939-75 En	able	(0-1)	0	0: Disable; 1: Enable
System	Setting				
					0: 3P3W (U-V-W)
1	AC Input		(0-2)	0	1: 2-phase (V-W)
					2: 2-phase (U-W)
2		Enable	(0-1)	0	0: Disable; 1: Enable
3	РТ	Primary Voltage	(30-30000) V	100	PT's primary voltage.
4		Secondary Voltage	(30-1000) V	100	PT's secondary voltage.
5		Enable	(0-1)	0	0: Disable; 1: Enable
6		Primary Current	(5-6000) A	500	CT's primary current
7	СТ	Secondary	(0-1)	0	0: 5A
/	U1	Current	(0-1)	0	1: 1A
					0: IA-IB-IC
8		CT Wiring	(0-2)	0	1: IA
					2: IB
9	Exciter Poles		(0-64)	0	Pole ratio=exciter poles/generator
10	Generator Po	bles	(1-64)	4	poles, which is used for detecting rotating diode fault.
11	Gen Rated Voltage		(30-30000) V	400	Standard for gen over/under voltage, target voltage. If PT is fitted, this value is the secondary voltage.
12	Gen Rated Current		(5-6000) A	500	Generator's rated current, standard for stator current.
13	Gen Rated Power Factor		(0.00-1.00)	0.8	Generator's rated power factor, standard for load power factor.
14	Gen Rated Fr	equency	(10.0-100.0) Hz	50.0	Standard for gen over/under frequency, voltage/frequency.
15	Gen Rated A	ctive Power	(0-6000) kW	276	Generator's rated active power, standard for load active power.
16	Gen Rated Re	eactive Power	(0-6000) kvar	208	Generator's rated reactive power,

No.	Item		Range	Default	Description
			-		standard for load reactive power.
17	Gen Rat Power	ed Apparent	(0-6000) kVA	346	Generator's rated apparent power, standard for load apparent power.
Excitatio	on Setting				
1	Rated Volta	ige	(0-200) V	63	Rated excitation voltage, standard for excitation over/under voltage.
2			(0-1)	1	
3			(0-200.0) %	120	0: Disable; 1: Enable.
4	Over Voltag	je 1 Setting	(0-200.0) %	116	Set value is the percentage of rated
5			(0-3600) s	3	excitation voltage.
6			(0-2)	2	Return value is the percentage of
7			(0-1)	1	rated excitation voltage
8			(0-200.0) %	110	Delay value.
9	Over Voltag	je 2 Setting	(0-200.0) %	108	Action: 0: None; 1: Warning; 2:
10	-	_	(0-3600) s	5	Fault.
11			(0-2)	1	
					Rated field current, standard for
12	Rated Curre	ent	(0-10) A	5.0	over-excitation limit.
13		Enable	(0-1)	0	0: Disable; 1: Enable
14		Overcurrent 1	(0-300.0) %	110	The threshold is the percentage of
15	Over	Overcurrent 2	(0-300.0) %	200	rated field current.
16	Excitation	Delay	(1-120)s	10	Delay value.
17	Limit (OEL)	Over- Act	(0-2)	1	Action: 0: None; 1: Warning; 2:
17		excit	(0 2)		Fault.
18		ation Delay	(0-3600) s	10	Delay value.
19		Enable	(0-1)	0	0: Disable; 1: Enable
20		Active Power (%)	(0-100.0) %	0	
21		Reactive Power (%)	(-100.0-0) %	-30	Under-excitation limit 1.
22		Active Power (%)	(0-100.0) %	10	
23	Under Excitation	Reactive Power (%)	(-100.0-0) %	-32	Under-excitation limit 2.
24	Limit (UEL)	Active Power (%)	(0-100.0) %	17	
25		Reactive Power (%)	(-100.0-0) %	-42	Under-excitation limit 3.
26		Active Power (%)	(0-100.0) %	70	
27		Reactive Power (%)	(-100.0-0) %	-35	Under-excitation limit 4.

No.		Item	Range	Default	Description
28		Active Power (%)	(0-100.0) %	90	Under-excitation limit 5.
29		Reactive Power (%)	(-100.0-0) %	-35	onder excitation limit 5.
30			(0-1)	0	
31	Short Circ	uit Setting of	(0-100.0) %	10	0: Disable; 1: Enable.
32	Rotating Di	5	(0-100.0) %	9	Set value is the percentage of field
33	Notating Di	ouc	(0-3600) s	1	current harmonic.
34			(0-2)	2	Return value is the percentage of
35			(0-1)	0	field current harmonic.
36	Open Circ	uit Setting of	(0-100.0) %	5	Delay value.
37	Rotating Di	•	(0-100.0) %	4	Action: 0: None; 1: Warning; 2:
38	Notating Di	oue	(0-3600) s	5	Fault.
39			(0-2)	2	
Gen Set	ting				
1	Reverse Ph	ase Seq. Detect	(0-1)	0	0: Disable; 1: Enable
2	Loss of Pha	ase Detect	(0-1)	0	0: Disable; 1: Enable
3			(0-1)	1	
4			(0-200.0) %	120	
5	Gen Over Voltage Alarm 1		(0-200.0) %	118	
6			(0-3600) s	3	
7			(0-2)	2	
8			(0-1)	1	
9			(0-200.0) %	110	0: Disable; 1: Enable.
10	Gen Over V	oltage Alarm 2	(0-200.0) %	108	Set value is the percentage of gen
11			(0-3600) s	5	rated voltage.
12			(0-2)	1	Return value is the percentage of
13			(0-1)	1	gen rated voltage.
14			(0-200.0) %	80	Delay value.
15		Voltage Alarm	(0-200.0) %	82	Action: 0: None; 1: Warning; 2:
16	1		(0-3600) s	3	Fault.
17			(0-2)	2	
18			(0-1)	1	
19			(0-200.0)%	84	
20	Gen Under Voltage Alarm 2		(0-200.0)%	86	
21			(0-3600)s	5	
22			(0-2)	1	
23			(0-1)	1	0: Disable; 1: Enable
24			(0-200.0%)	114	Set value is the percentage of gen
25		requency Alarm	(0-200.0%)	110	rated frequency.
26	1		(0-3600s)	3	Return value is the percentage of
20			(0-2)	2	gen rated frequency.
21			<u>\- =</u> /	=	<u></u>

No.	Item	Range	Default	Description
28	Gen Over Frequency Alarm 2	(0-1)	1	Delay value.
29		(0-200.0) %	110	Action: 0: None; 1: Warning; 2:
30		(0-200.0) %	108	Fault.
31		(0-3600) s	5	
32		(0-2)	1	
33		(0-1)	1	
34	Gen Under Frequency Alarm 1	(0-200.0) %	80	
35		(0-200.0) %	82	
36		(0-3600) s	3	
37		(0-2)	2	
38	Gen Under Frequency Alarm 2	(0-1)	1	
39		(0-200.0) %	84	
40		(0-200.0) %	86	
41		(0-3600) s	5	
42		(0-2)	1	
43	Gen Unbalanced Voltage 1	(0-1)	1	
44		(0-200.0%)	10	0: Disable; 1: Enable
45		(0-200.0%)	5	Set value is gen unbalanced
46		(0-3600s)	5	voltage.
47		(0-2)	1	Return value is gen unbalanced
48		(0-1)	0	voltage.
49	Gen Unbalanced Voltage 2	(0-200.0%)	10	Delay value.
50		(0-200.0%)	5	Action: 0: None; 1: Warning; 2:
51		(0-3600s)	5	Fault.
52		(0-2)	0	
53		(0-1)0	0	
54	Gen Waveform Distortion	(0-200.0%)10	10	0: Disable; 1: Enable
55		(0-200.0%)5	5	Set value is waveform distortion of
56		(0-3600s)5	5	gen voltage.
57		(0-2)0	0	Return value is waveform distortion
58	Gen Waveform Distortion	(0-1)0	0	of gen voltage.
59		(0-200.0%)10	10	Delay value.
60		(0-200.0%)5	5	Action: 0: None; 1: Warning; 2:
61		(0-3600s)5	5	Fault.
62		(0-2)0	0	
63	No Power Generation	(0-1)	1	0: Disable; 1: Enable
64		(0-100.0) %	30	Set value is the percentage of rated
65		(0-100.0) %	10	field current.
66	Alarm	(0-3600) s	2	Delay value.
67		(0-2)	2	Action: 0: None; 1: Warning; 2: Fault.

No.	ltem		Range	Default	Description
68		Enable	(0-1)	0	0: Disable; 1: Enable
69		Overcurrent Alarm 1	(0-300.0) %	110	Threshold is the percentage of gen
70	Stator Current	Overcurrent Alarm 2	(0-300.0) %	200	rated current.
71	Limit (SCL)	Overcurrent Alarm Delay	(1-120) s	10	Delay value.
72		Limit Action	(0-2)	1	Action: 0: None; 1: Warning; 2: Fault.
73		Action Delay	(0-3600) s	10	Delay value.
74 75 76	Short Cir	cuit Alarm 1	(0-1) (0-500.0) % (0-500.0) %	1 200 180	0: Disable; 1: Enable. Set value is the percentage of gen
77 78			(0-3600) s (0-2)	1 2	rated current. Return value is the percentage of
79 80 81	Short Circuit Alarm 2		(0-1) (0-500.0) % (0-500.0) % (0-3600) s	0 200 180 5	gen rated current. Delay value. Action: 0: None; 1: Warning; 2: Fault.
82			(0-3600) \$	5	T duit.
83 84					
85	Unbalanced Current Alarm		(0-1) (0-200.0) %	1 20	
86			(0-200.0) %	18	
87	1		(0-3600) s	5	
88			(0-2)	1	
89			(0-1)	0	
90			(0-200.0) %	20	
91	Unbalanced Current Alarm 2		(0-200.0) %	18	
92			(0-3600) s	5	
93			(0-2)	1	
94			(0-1)	0	
95			(0-200.0) %	10	0: Disable; 1: Enable.
96	Current	Waveform	(0-200.0) %	5	Set value is the waveform
97	Distortio	n I	(0-3600) s	5	distortion of load current.
98			(0-2)	0	Return value is the waveform
99			(0-1)	0	distortion of load current.
100			(0-200.0) %	10	Delay value.
101		Waveform	(0-200.0) %	5	Action: 0: None; 1: Warning; 2:
102	Distortio	n 2	(0-3600) s	5	Fault。
103			(0-2)	0	
104	Over Pov	wer Alarm 1	(0-1)	1	0: Disable; 1: Enable.

No.	Item	Range	Default	Description		
105		(0-200.0) %	120	Set value is the percentage of gen		
106		(0-200.0) %	118	rated active power.		
107		(0-3600) s	3	Return value is the percentage of		
108		(0-2)	2	gen rated active power.		
109		(0-1)	0	Delay value.		
110		(0-200.0) %	110	Action: 0: None; 1: Warning; 2:		
111	Over Power Alarm 2	(0-200.0) %	108	Fault.		
112		(0-3600) s	3			
113		(0-2)	1			
114		(0-1)	1			
115		(0-200.0) %	10			
116	Reverse Power Alarm 1	(0-200.0) %	8			
117		(0-3600) s	3			
118		(0-2)	2			
119		(0-1)	0			
120		(0-200.0) %	5			
121	Reverse Power Alarm 2	(0-200.0) %	3			
122		(0-3600) s	5			
123		(0-2)	1			
124		(0-1)	1			
125		(0-200.0) %	20			
126	Loss of Excitation Fault 1	(0-200.0) %	18	0: Disable; 1: Enable.		
127		(0-3600) s	5	Set value is the percentage of gen		
128		(0-2)	1	rated reactive power. Return value is the percentage of		
129		(0.1)	0	gen rated reactive power.		
130		(0-1)	0	Delay value.		
130	Loss of Excitation Fault 2	(0-200.0) % (0-200.0) %	20 18	Action: 0: None; 1: Warning; 2:		
131		(0-200.0) % (0-3600) s	5	Fault.		
132		(0-2)	1			
133		(0 2)	•			
134		(0-1)	1			
135	4	(0-1.00)	0.70			
136	Power Factor Low Alarm 1	(0-1.00)	0.75	0: Disable; 1: Enable.		
137		(0-3600) s	5	Set value is gen power factor.		
138		(0-2)	2	Return value is gen power factor.		
139		(0-1)0	0	Delay value.		
140	4	(0-1.00)0.70	0.70	Action: 0: None; 1: Warning; 2:		
141	Power Factor Low Alarm 2	(0-1.00)0.75	0.75	Fault.		
142		(0-3600s)5	5			
143		(0-2)1	1			
Excitati	Excitation Mode					

No.	Item		Range	Default	Description
1	Regulation Mode		(0-3)	0	0: AVR Mode; 1: FCR Mode; 2: VAR Mode; 2: PF Mode.
2	Start Thresho	old	(0.1-100.0) %	20.0	Set value of AVR mode is the percentage of rated voltage. Set value of FCR mode is the percentage of rated field current.
3	Initial Duty C	ycle	(0.0-100.0) %	0	Initial PWM duty cycle.
4	Soft Start En	able	(0-1)	0	0: Disable; 1: Enable.
5	Soft Start Tir	ne	(0.1-120) s	3	When this function is enabled, it is the transfer time of generator terminal voltage from soft start voltage to rated voltage.
6		Frequency	(10.0-100.0) Hz	10.0	Frequency of excitation stopping.
7	Excitation	Supply Volt	(0-450.0) V	20.0	Power input voltage of excitation stopping.
8	Stop	Delay	(0-3600) s	0	Delay value when the above two stop excitation conditions are met at the same time.
9	Threshold St	art Mode	(0-1)	0	0: Disable; 1: Enable.
AVR Set	tting				
10	AVR Output \	/oltage	(0.0-200.0) %	100.0	AVR mode, outputting voltage value, percentage of rated voltage.
11		Start Freq.	(10.0-100.0) %	10	Gen frequency when U/F characteristic starts.
12	Volt/Freq.	Knee Freq.	(70.0-100.0) %	96	Knee frequency of U/F characteristic.
13	(U/F) Set	U/F Slope	(0.5-5.0) %/Hz	1.0	Slope of U/F characteristic, change the rated frequency by 1%, change the rated voltage by SLOPE%
14		Enable	(0-1)	0	0: Disable; 1: Enable.
15	Load	Drop Value	(70.0-100.0) %	90.0	Set value is the percentage of rated voltage.
16	Compensat ion (LCF)	Delay	(0-10.0) s	1.0	Continuous time of load compensation.
17		Rise Slope	(0-100.0) %/s	0.2	The percentage of the rated voltage rising per second.
18	Drocp Cat	Enable	(0-1)	0	
19	Droop Set	Set Value	(0.0-10.0) %	3.0	Droop and transmission line drop
20	Transmissi	Enable	(0-1)	0	compensation cannot be enabled
21	on Line Drop Set	Set Value	(0.0-20.0) %	3.0	at the same time.
AVR Fin	e-tuning Settir	ng	•	•	

No.	Item		Range	Default	Description
22	Lower Limit		(-50.0-(-0.1)) %	-10	Set value is the percentage of gen
23	Upper Limit		(0.1-50.0) %	10	rated voltage.
		Enable	(0-1)	0	0: Disable; 1: Enable.
24	Digital				When it is enabled, gen output
25	Fine-tuning	Rate	(0.1-9.9) %/s	1.0	voltage can be adjusted through
					input port.
06		Enable	(0-1)	0	0: Disable; 1: Enable.
26	Voltage	Min Voltage	(-10.0-10.0) V	0	When it is enabled, gen output
27	Fine-tuning		(10.0.10.0))/		voltage can be adjusted through
28		Max Voltage	(-10.0-10.0) V	5.0	analog input voltage.
		Enable	(0-1)	0	0: Disable; 1: Enable.
29	Resistance	Min Resist.	(0-6000) Ω	0	When it is enabled, gen output
30	Fine-tuning			(000	voltage can be adjusted through
31	_	Max Resist.	(0-6000) Ω	6000	analog input resistance.
FCR Se	tting	l	I	1	
32	Field Current	t Track	(0-1)	0	0: Disable; 1: Enable.
33	FCR Field Cu	irrent	(0-10.0) A	0.1	FCR mode, outputting field current.
34	Lower Limit		(-100.0-0) %	-100.0	Set value is the percentage of rated
35	Upper Limit		(0.0-200.0) %	100.0	field current.
	D' 'I I	Enable	(0-1)	0	0: Disable; 1: Enable.
36	Digital	Rate		1.0	When it is enabled, field current can
37	Fine-tuning		(0.1-9.9) %/s		be adjusted through input port.
		Enable	(0-1)	0	0: Disable; 1: Enable.
38	Voltage	Min Voltage	(-10.0-10.0) V	0	When it is enabled, field current can
39	Fine-tuning	Max Voltage	(-10.0-10.0) V	F 0	be adjusted through analog input
40				5.0	voltage.
		Enable	(0-1)	0	0: Disable; 1: Enable.
41	Resistance	Min Resist.	(0-6000) Ω	0	When it is enabled, field current can
42	Fine-tuning		(0, (000) 0	(000	be adjusted through analog input
43		Max Resist.	(0-6000) Ω	6000	resistance.
VAR Se	tting				
				0	VAR mode, outputting the
44	VAR Control		(-100.0-100.0) %	0	percentage of reactive power.
45	Lower Limit		(-100.0-0) %	-100	Set value is the percentage of rated
46	Upper Limit		(0.0-100.0) %	100	reactive power.
47	Digital	Enable	(0-1)	0	When it is enabled, reactive power
48	Fine-tuning	Rate	(0.1-9.9) %/s	1.0	can be adjusted through input port.
40		Enable	(0-1)	0	0: Disable; 1: Enable.
49 50	Voltage	Min Voltage	(-10.0-10.0) V	0	When it is enabled, reactive power
50	Fine-tuning			FO	can be adjusted through analog
51		Max Voltage	(-10.0-10.0) V	5.0	input voltage.
52	Resistance	Enable	(0-1)	0	0: Disable; 1: Enable.

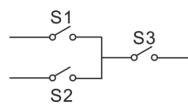
53 Fine-tuning Min Resist. $(0.6000) \Omega$ 0 When it is enabled, reactive power can be adjusted through analog input resistance. PF Settior	No.		lt	em	Range	Default	Description
$ \begin{array}{ c c c c c c } \hline Max Resist. 0-6000 \Omega & 6000 \\ \minut resistance. \\ \hline PF Setting \\ \hline \begin{tabular}{ c c c c c c } \hline PF control & (0.50L-0.50C) & 0.800L & PF mode, target power factor. \\ \hline \begin{tabular}{ c c c c c c c } \hline PF control & (0.50L-0.50C) & 1.00 & minimum value of power factor. \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	53	Fine-tu	ning	Min Resist.	(0-6000) Ω	0	When it is enabled, reactive power
55 PF Control (0.50L-0.50C) 0.800L PF mode, target power factor. 56 Lower Limit (0.50L-0.50C) 1.00 Set value is the maximum and minimum value of power factor. 58 Digital Enable (0.1) 0 When it is enabled, power factor. 59 Fine-tuning Rate (0.01-0.99) %/s 0.01 can be adjusted through input port. 60 Voltage Enable (0.10-0.90) %/s 0.01 can be adjusted through analog input voltage. 61 Fine-tuning Rate (0.0-10.0) V 5.0 Can be adjusted through analog input voltage. 62 Fine-tuning Max Voltage (-10.0-10.0) V 5.0 Can be adjusted through analog input voltage. 63 Resistance Enable (0-6000) Ω 6000 Can be adjusted through analog input voltage. 7 DC Compensation (0-1) 0 0 Disable; 1: Enable. 1 DC Compensation (0-1) 0 0 Disable; 1: Enable. 2 Input Voltage of Excitation (0-100.0) % 100.0	54			Max Resist.	(0-6000) Ω	6000	
56Lower Limit $(0.50L-0.50C)$ 1.00 Set value is the maximum and minimum value of power factor.57Upper Limit $(0.50L-0.50C)$ 1.00 minimum value of power factor.58DigitalEnable $(0-1)$ 0 When it is enabled, power factor can be adjusted through input port.60VoltageFine-tuningEnable $(0-1)$ 0 0 : Disable; 1: Enable.61VoltageMin Voltage $(10.0-10.0)$ V 0 When it is enabled, power factor can be adjusted through analog input voltage.63ResistanceEnable $(0-1)$ 0 0 : Disable; 1: Enable.64Min Resist. $(0-6000) \Omega$ 0 When it is enabled, power factor can be adjusted through analog input voltage.71DC Compensation $(0-1)$ 0 0 : Disable; 1: Enable.8Piower $(0-6000) \Omega$ 0 0 9Nax Resist. $(0-6000) \Omega$ 0 0 9DC Compensation Factor $(1-10)$ 3 Compensation factor in DC compensating.3DC Compensation Factor $(1-10)$ 3 Compensation factor in DC compensating.4Max Output Duty Cycle $(0-100.0)$ % 100.0 Max output duty cycle in excitation regulation.5Negative Excitation $(0-2000.0)$ % 20 PID set value of AVR mode.1112KE Coefficient $(0-2000.0)$ % 20 PID set value of FCR mode.14KG Coefficient $(0-2000.0)$ % 20 PID set	PF Sett	ing				1	
57 Upper Limit (0.50L-0.50C) 1.00 minimum value of power factor. 58 Digital Fine-tuning Enable (0-1) 0 When it is enabled, power factor can be adjusted through input port. 60 Voltage Fine-tuning Enable (0-1) 0 0:Disable; 1:Enable. 60 Min Voltage (-10.0-10.0) V 0 When it is enabled, power factor can be adjusted through analog input voltage. 63 Resistance Fine-tuning Enable (0-1) 0 0:Disable; 1:Enable. 64 Max Voltage (10.0-10.0) V 5.0 When it is enabled, power factor can be adjusted through analog input voltage. 63 Resistance Fine-tuning Enable (0-1) 0 0:Disable; 1:Enable. 7 DC Compensation (0-1) 0 0:Disable; 1:Enable. Input voltage of excitation power in voltage regulator normal running. 7 DC Compensation Factor (1-10) 3 Compensation factor in DC compensation factor in DC 7 Negative Excitation (0-100.0) % 100.0 Max output voltage regulator normal running. 8 Negative Ex	55	PF Con	trol		(0.50L-0.50C)	0.800L	PF mode, target power factor.
58 Digital Fine-tuning Enable (0-1) 0 When it is enabled, power factor can be adjusted through input port. 60 Voltage Fine-tuning Enable (0-1) 0 0: Disable; 1: Enable. 61 Voltage Fine-tuning Enable (0-1) 0 0: Disable; 1: Enable. 63 Resistance Fine-tuning Enable (0-1) 0 0: Disable; 1: Enable. 64 Min Voltage (-10.0-10.0) V 5.0 Can be adjusted through analog input voltage. 63 Resistance Enable (0-1) 0 0: Disable; 1: Enable. 7 DC Compensation (0-6000) Ω 6000 Good Can be adjusted through analog input voltage. 1 DC Compensation (0-1) 0 0: Disable; 1: Enable. Input voltage of excitation power in voltage regulator normal running. 3 DC Compensation Factor (1-10) 3 Compensating. 4 Max Output Duty Cycle (0-100.0) % 100.0 Max output duty cycle in excitation regulation. 5 Negative Excitation (0-20.000) % 20	56	Lower I	_imit		(0.50L-0.50C)	1.00	Set value is the maximum and
59 Fine-tuning Rate (0.01-0.99) %/s 0.01 can be adjusted through input port. 60 11 62 Voltage Fine-tuning Enable (0-1) 0 0: Disable; 1: Enable. 63 64 65 Resistance Fine-tuning Enable (0-1) 0 0: Disable; 1: Enable. 63 64 Resistance Fine-tuning Enable (0-1) 0 0: Disable; 1: Enable. 63 64 Resistance Fine-tuning Enable (0-6000) Ω 0 When it is enabled, power factor can be adjusted through analog input voltage. 71 DC Compensation (0-100.0) Ω 0 Disable; 1: Enable. 1 DC Compensation (0-10 0 0: Disable; 1: Enable. 1 DC Compensation Factor (0-450.0) V 270 Input voltage of excitation power in voltage regulator normal running. 3 DC Compensation Factor (1-10) 3 Compensation factor in DC compensating. 4 Max Output Duty Cycle (0-100.0) % 100.0 Max autput duty cycle in excitation regulation. 5 Negative Excitation (0-2000.0) % 20 PID	57	Upper L	imit		(0.50L-0.50C)	1.00	minimum value of power factor.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	58	Digital		Enable	(0-1)	0	When it is enabled, power factor
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	59	Fine-tu	ning	Rate	(0.01-0.99) %/s	0.01	can be adjusted through input port.
$ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	60			Enable	(0-1)	0	0: Disable; 1: Enable.
$ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Voltage	è	Min Voltage	(-10.0-10.0) V	0	When it is enabled, power factor
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Fine-tur	ning	Max Voltage	(-10.0-10.0) V	5.0	
$ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline $	62			Enable	(0-1)	0	0: Disable; 1: Enable.
65Fine-tuning PID SettingMax Resist.(0-6000) Ω6000 6000can be adjusted through analog input resistance.1DC Compensation(0-1)00 Disable; 1: Enable.2Input Voltage of Excitation Power(0-450.0) V270Input voltage of excitation power in voltage regulator normal running.3DC Compensation Factor Power(1-10)3Compensation factor in DC compensating.4Max Output Duty Cycle(0-100.0) %100.0Max output duty cycle in excitation regulation.5Negative Excitation(0-1)00 Disable; 1: Enable.PID ParameterKP Gain(0-20000) %1.000Coefficient of PID set value.89KI Stability(0-2000.0) %20PID set value of AVR mode.11Negative Excitation(0-2000.0) %20PID set value of AVR mode.13KF Gain(0-2000.0) %20PID set value of FCR mode.13KF Gain(0-2000.0) %20PID set value of FCR mode.13KF Gain(0-2000.0) %20PID set value of FCR mode.14KF Gain(0-2000.0) %20PID set value of FCR mode.13KF Gain(0-2000.0) %20PID set value of FCR mode.14KF Gain(0-2000.0) %20PID set value of FCR mode.15KF Gain(0-2000.0) %20PID set value of FCR mode.16KF Gain(0-2000.0) %20PID set value of FCR mode.17KF Gai		Resista	nce	Min Resist.	(0-6000) Ω	0	When it is enabled, power factor
1 DC Compensation (0-1) 0 0: Disable; 1: Enable. 2 Input Voltage of Excitation Power (0-450.0) V 270 Input voltage of excitation power in voltage regulator normal running. 3 DC Compensation Factor (1-10) 3 Compensation factor in DC compensating. 4 Max Output Duty Cycle (0-100.0) % 100.0 Max output duty cycle in excitation regulation. 5 Negative Excitation (0-1) 0 0: Disable; 1: Enable. PID Parameter KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 8 MAR KG Coefficient (0-20.000) % 2.0 PID set value of AVR mode. 11 12 KG Coefficient (0-20.000) % 2.0 PID set value of AVR mode. 13 KF Derivative (0-20.000) % 2.0 PID set value of FCR mode. 13 KG Coefficient (0-200.00) % 2.0 PID set value of FCR mode. 14 KF Gain (0-200.00) % 2.0 PID set value of FCR mode. 14 KG Coefficient (Fine-tu	ning	Max Resist.	(0-6000) Ω	6000	
2Input Voltage of Excitation Power(0-450.0) V270Input voltage of excitation power in voltage regulator normal running.3DC Compensation Factor(1-10)3Compensation factor in DC compensation.4Max Output Duty Cycle(0-100.0) %100.0Max output duty cycle in excitation regulation.5Negative Excitation(0-1)00: Disable; 1: Enable.7PID ParameterKG Coefficient(0-2000.0) %2089KI Stability(0-2000.0) %201112KG Coefficient(0-2000.0) %2013KG Coefficient(0-2000.0) %013KG Coefficient(0-2000.0) %1.00013KG Coefficient(0-2000.0) %2013KG Coefficient(0-2000.0) %2013KG Coefficient(0-2000.0) %2013KG Coefficient(0-2000.0) %2013KG Coefficient(0-2000.0) %2013KG Coefficient(0-2000.0) %2014KG Derivative(0-2000.0) %2015KG Coefficient(0-2000.0) %016KD Derivative Filter Coefficient(0-20.000) %1.00018VARKG Coefficient(0-20.000) %1.00019VARKG Coefficient(0-2000.0) %2019VARKG Coefficient(0-20.000) %1.00010Derivative filter coefficient.18VARKF Gain <td< td=""><td>PID Set</td><td>ting</td><td></td><td></td><td></td><td></td><td></td></td<>	PID Set	ting					
2Power(0-450.0) V270voltage regulator normal running.3DC Compensation Factor(1-10)3Compensation factor in DC compensating.4Max Output Duty Cycle(0-100.0) %100.0Max output duty cycle in excitation regulation.5Negative Excitation(0-1)00: Disable; 1: Enable.PID ParameterKG Coefficient(0-20.000) %1.000Coefficient of PID set value.89KG Coefficient(0-2000.0) %2010AVRKG Derivative(0-2000.0) %201112KG Coefficient(0-20.000) %013KG Coefficient(0-20.000) %1.000Coefficient of PID set value.13KG Goefficient(0-20.000) %20PID set value of FCR mode.13KG Coefficient(0-2000.0) %20PID set value of FCR mode.13KG Derivative(0-2000.0) %01.000Coefficient of PID set value.13KG Derivative Filter Coefficient(0-2000.0) %20PID set value of FCR mode.13KG Derivative Filter Coefficient(0-2000.0) %01.000Derivative filter coefficient.13KG Coefficient(0-20.000) %1.000Derivative filter coefficient.13KG Derivative Filter Coefficient(0-20.000) %20PID set value of FCR mode.14YARKG Coefficient(0-20.000) %1.000Derivative filter coefficient.13KG Goefficient(0-20.000) %20	1	DC Con	npens	sation	(0-1)	0	0: Disable; 1: Enable.
3 DC Compensation Factor (1-10) 3 compensating. 4 Max Output Duty Cycle (0-100.0) % 100.0 Max output duty cycle in excitation regulation. 5 Negative Excitation (0-1) 0 0: Disable; 1: Enable. PID Parameter KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 8 KF Gain (0-2000.0) % 20 PID set value of AVR mode. 11 KE Derivative (0-2000.0) % 20 PID set value of AVR mode. 12 KG Coefficient (0-2000.0) % 0 PID set value of AVR mode. 11 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 14 KF Gain (0-2000.0) % 20 PID set value of FCR mode. 16 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 17 KE Derivative Filter Coefficient (0-2000.0) % 20 PID set value of FCR mode.	2				(0-450.0) V	270	
4 Max Output Duty Cycle (0-100.0) % 100.0 regulation. 5 Negative Excitation (0-1) 0 0: Disable; 1: Enable. PID Parameter Vertice (0-20000) % 1.000 Coefficient of PID set value. 8 Max Output Duty Cycle (0-20000) % 1.000 Coefficient of PID set value. 8 KG Coefficient (0-2000.0) % 20 PID set value of AVR mode. 10 AVR KG Coefficient (0-2000.0) % 20 PID set value of AVR mode. 11 KD Derivative (0-2000.0) % 0 0 Derivative filter coefficient. 12 KG Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 14 FCR KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 16 KD Derivative (0-2000.0) % 0 1.000 Derivative filter coefficient. 16 KD Derivative Filter Coefficient (0-20.000) % <td< td=""><td>3</td><td>DC Con</td><td colspan="2">OC Compensation Factor</td><td>(1-10)</td><td>3</td><td></td></td<>	3	DC Con	OC Compensation Factor		(1-10)	3	
Bit PID Parameter KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 8 9 KG Coefficient (0-20.000) % 20 PID set value of AVR mode. 10 AVR KI Stability (0-2000.0) % 20 PID set value of AVR mode. 11 KD Derivative (0-2000.0) % 0 10 Derivative filter coefficient. 12 KG Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 13 KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 14 KG Derivative Filter (0-2000.0) % 20 PID set value of FCR mode. 16 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 17 KG Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20	4	Max Ou	itput l	Duty Cycle	(0-100.0) %	100.0	
8 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 9 NR KP Gain (0-200.0) % 20 PID set value of AVR mode. 10 AVR KI Stability (0-2000.0) % 20 PID set value of AVR mode. 11 KD Derivative (0-2000.0) % 0 0 Derivative of AVR mode. 12 KG Coefficient (0-2000.0) % 0 0 Derivative filter coefficient. 12 KG Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 14 KG Gain (0-2000.0) % 20 PID set value of FCR mode. 16 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 17 KD Derivative Filter (0-20.000) % 1.000 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20 <t< td=""><td>5</td><td>Negativ</td><td>e Exc</td><td>itation</td><td>(0-1)</td><td>0</td><td>0: Disable; 1: Enable.</td></t<>	5	Negativ	e Exc	itation	(0-1)	0	0: Disable; 1: Enable.
8 9 KP Gain (0-2000.0) % 20 PID set value of AVR mode. 10 AVR KI Stability (0-2000.0) % 20 PID set value of AVR mode. 11 KD Derivative (0-2000.0) % 0 0 Derivative filter coefficient. 12 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 13 KF Gain (0-2000.0) % 20 PID set value of FCR mode. 14 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 16 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 16 KD Derivative (0-2000.0) % 0 Derivative filter coefficient. 17 KG Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 20 PID set value of VAR mode.	PID Par	ameter					
9 AVR KP Gain (0-2000.0) % 20 PID set value of AVR mode. 11 12 KI Stability (0-2000.0) % 0 PID set value of AVR mode. 12 KD Derivative (0-2000.0) % 0 Derivative filter coefficient. 12 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 13 KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 14 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 16 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 17 KD Derivative Filter Coefficient (0-2000.0) % 0 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode	0		KG C	oefficient	(0-20.000) %	1.000	Coefficient of PID set value.
10 AVR KI Stability (0-2000.0) % 20 PID set value of AVR mode. 11 12 KD Derivative (0-2000.0) % 0 0 12 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 13 KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 14 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 16 KI Stability (0-2000.0) % 0 PID set value of FCR mode. 16 KE Derivative Filter Coefficient (0-20.000) % 0 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode.			KP G	ain	(0-2000.0) %	20	
Information KD Derivative (0-2000.0) % 0 11 12 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 13 KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 14 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 16 KD Derivative (0-2000.0) % 0 0 KE Derivative Filter (0-20.000) % 0 Derivative filter coefficient. 16 KE Derivative Filter (0-20.000) % 0 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode			KI St	ability	(0-2000.0) %	20	PID set value of AVR mode.
12 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 13 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 13 KG Coefficient (0-2000.0) % 20 PID set value of FCR mode. 14 KI Stability (0-2000.0) % 20 PID set value of FCR mode. 16 KD Derivative (0-2000.0) % 0 0 16 KE Derivative Filter Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode			KD D	erivative	(0-2000.0) %	0	
13 KP Gain (0-2000.0) % 20 14 KI Stability (0-2000.0) % 20 15 KI Stability (0-2000.0) % 20 16 KD Derivative (0-2000.0) % 0 16 KE Derivative Filter (0-20.000) % 0 17 KE Derivative Filter (0-20.000) % 1.000 18 KG Coefficient (0-20.000) % 1.000 Coefficient of PID set value. 19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode.					(0-20.000) %	1.000	Derivative filter coefficient.
14 KP Gain (0-2000.0) % 20 15 KI Stability (0-2000.0) % 20 16 KD Derivative (0-2000.0) % 0 16 KE Derivative Filter Coefficient (0-2000.0) % 0 18 KG Coefficient (0-20.000) % 1.000 Derivative filter coefficient. 19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode.			KG C	oefficient	(0-20.000) %	1.000	Coefficient of PID set value.
15 16 17FCRKI Stability KD Derivative(0-2000.0) % (0-2000.0) %20PID set value of FCR mode.16 17KD Derivative Coefficient(0-2000.0) % (0-20.000) %0018 19KG Coefficient(0-20.000) % (0-2000.0) %1.000Derivative filter coefficient.18 19VARKG Coefficient(0-2000.0) % (0-2000.0) %20PID set value of VAR mode.		KP G		ain	(0-2000.0) %	20	
16 17KD Derivative KE Derivative Filter Coefficient(0-2000.0) %017KE Derivative Filter Coefficient(0-20.000) %1.000Derivative filter coefficient.18 19KG Coefficient(0-20.000) %1.000Coefficient of PID set value.19VARKP Gain(0-2000.0) %20PID set value of VAR mode		KI St	ability	(0-2000.0) %	20	PID set value of FCR mode.	
17KE Derivative Filter Coefficient(0-20.000) %1.000Derivative filter coefficient.18KG Coefficient(0-20.000) %1.000Coefficient of PID set value.19VARKP Gain(0-2000.0) %20PID set value of VAR mode		KD D		erivative	(0-2000.0) %	0	
19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode					(0-20.000) %	1.000	Derivative filter coefficient.
19 VAR KP Gain (0-2000.0) % 20 PID set value of VAR mode	18		KG C	oefficient	(0-20.000) %	1.000	Coefficient of PID set value.
PID set value of VAR mode		VAR			、 <i>,</i>		
$20 (1.5(a)) (y) (0^2 2000.0) / 0 20 $	20		KI St	ability	(0-2000.0) %	20	PID set value of VAR mode.

No.		ltem	Range	Default	Description
21		KD Derivative	(0-2000.0) %	0	
22		KE Derivative Filter Coefficient	(0-20.000)%	1.000	Derivative filter coefficient.
23		KG Coefficient	(0-20.000) %	1.000	Coefficient of PID set value.
23 24		KP Gain	(0-2000.0) %	20	
24 25	PF	KI Stability	(0-2000.0) %	20	PID set value of PF mode.
26		KD Derivative	(0-2000.0) %	0	
27		KE Derivative Filter	(0-20.000) %	1.000	Derivative filter coefficient.
		Coefficient	(0 20.000) /0	1.000	
-	nputs Se	-			
Digital I	nput1 S	etting	Γ	T	
1	Setting	J	(0-20)	0	Not used.
2	Active	Туре	(0-1)	0	0: Close; 1: Open.
3	Input D	Delay	(0-20.0) s	2.0	Time from input is active to be confirmed.
Digital I	nput2 S	etting			
4	Setting	J	(0-20)	0	Not used.
5	Active	Туре	(0-1)	0	0: Close; 1: Open.
6	Input D)elav	(0-20.0) s	2.0	Time from input is active to be
0	mput		(0 20.0) 3	2.0	confirmed.
Digital I	nput3 S	etting			
7	Setting		(0-20)	0	Not used.
8	Active	Туре	(0-1)	0	0: Close; 1: Open.
9	Input D	Delay	(0-20.0) s	2.0	Time from input is active to be confirmed.
Digital I	nput4 S	etting			
10	Setting		(0-20)	0	Not used.
11	Active	Туре	(0-1)	0	0: Close; 1: Open.
12	Input D)elav	(0-20.0) s	2.0	Time from input is active to be
12	mput	ciay	(0 20.0) 3	2.0	confirmed.
Digital (Outputs	Setting			
Digital (Output1	Setting		1	
1	Content Setting		(0-1)	0	0: Normally Open; 1: Normally Close.
2	Output Type		(0-40)	0	Not used.
Digital (Output2	Setting			
3	Content Setting		(0-1)0	0	0: Normally Open; 1: Normally Close.
4	Output Type		(0-40)1	0	Not used.
CAN Co	mmunio	cation Setting			
1	CAN C	ommunication	(0-1)	0	0: Disable; 1: Enable. CAN communication protocol

No.	Item	Range	Default	Description		
				refers to Appendix 1.		
2	CAN Baud Rate	(0-3)	1	0: 500kBit/s; 1: 250kBit/s; 2: 125kBit/s; 3: 50kBit/s. Transmission distance refers to Table 6 Relation Between CAN-bus Transmission Distance and Baud Rate.		
Alt. Cor	figuration 1					
1	Enable	(0-1)	0	0: Disable; 1: Enable.		
Alt. Cor	Alt. Configuration 2					
1	Enable	(0-1)	0	0: Disable; 1: Enable.		

6.2 DEFINED CONTENTS OF PROGRAMMABLE OUTPUT 1-2

6.2.1 DEFINED CONTENTS TABLE OF PROGRAMMABLE OUTPUT 1-2


Table 10 Defined Content of Programmable Output 1-2

No.	ltem	Function Description			
0	Not Used				
1	Defined Combination Output 1	See the following contents for function description.			
2	Defined Combination Output 2	See the following contents for function description.			
3	Reserved				
4	Reserved				
5	Reserved				
6	Reserved				
7	Alarm Output	Action when common warning/fault alarm occurs.			
8	Normal Running	Output when voltage regulator is normally running.			
9	Gen Over Voltage	Action when gen over voltage alarm occurs.			
10	Gen Under Voltage	Action when gen under voltage alarm occurs.			
11	Gen Over Frequency	Action when gen over frequency alarm occurs.			
12	Gen Under Frequency	Action when gen under frequency alarm occurs.			
13	Excitation Overcurrent	Action when excitation overcurrent alarm occurs.			
14	Excitation Over Voltage	Action when excitation over voltage alarm occurs.			
15	Reserved				
16	Gen Unbalanced Voltage	Action when gen unbalanced alarm occurs.			
17	No Power Generation	Action when no power generation alarm occurs.			
18	Large THDu	Action when large THDu alarm occurs.			
19	Rotating Diode Open	Action when rotating diode open circuit alarm occurs.			
20	Rotating Diode Short	Action when rotating diode short circuit alarm occurs.			
21	Over Power	Action when gen over power alarm occurs.			
22	Reverse Power	Action when gen reverse power alarm occurs.			
23	Power factor Low	Action when gen power factor low alarm occurs.			
24	Stator Overcurrent	Action when stator overcurrent alarm occurs.			

No.	Item	Function Description
25	Loss of Excitation	Action when gen loss of excitation alarm occurs.
26	Gen Unbalanced Current	Action when gen unbalanced current alarm occurs.
27	Large THDI	Action when large gen THDi alarm occurs.
28	Short Circuit	Action when short circuit alarm occurs.
29	AVR Mode	Output in AVR mode.
30	FCR Mode	Output in FCR mode.
31	Reserved	
32	VAR Mode	Output in VAR mode.
33	PF Mode	Output in PF mode.
34	Droop Output	Output in Droop mode.
35-40	Reserved	

6.2.2 DEFINED COMBINATION OUTPUT

Defined combination output is composed by 3 parts, or condition output S1, or condition output S2, and condition output S3.

S1 or S2 is **TRUE**, and S3 is **TRUE**, defined combination output is active; S1 and S2 are **FALSE**, or S3 is **FALSE**, defined combination output is inactive.

of and oz are **TALGE**, of constra**LGE**, defined combination output is inderive.

ANOTE1: S1, S2, S3 can be set as any contents except for "defined combination output" in the output setting.

ANOTE2: 3 parts of defined combination output (S1, S2, S3) couldn't include or recursively include themselves.

For example:

Contents of or condition output S1: alarm output;

Close when or condition output S1 is active/inactive: close when active (disconnect when inactive);

Contents of or condition output S2: droop function;

Close when or condition output S2 is active/inactive: close when active (disconnect when inactive);

Contents of and condition output S3: AVR mode;

Close when and condition output S3 is active/inactive: close when active (disconnect when inactive);

When alarm output or droop function is active, if AVR mode is active, defined combination output is active; If AVR mode is inactive, defined combination output is inactive;

When alarm output and droop function are inactive, whatever AVR mode is active or not, defined combination output is inactive.

6.3 DEFINED CONTENTS OF DIGITAL INPUT 1-4

Table 11 Defined Contents of Digital Input 1-4 (All COM Connected Active)

No.	ltem	Function Description				
0	Not Used					
1	Droop Function	When input is active, droop function is enabled in AVR mode.				
		After setting, when input is active, voltage regulator enters standby				
2	Excitation Disconnect	status, excitation is disconnected. When input is inactive, all alarms				
2		are removed automatically, voltage regulator enters auto regulation				
		status.				
3	AVR Mode	When input is active, voltage regulator enters AVR mode.				
4	FCR Mode	When input is active, voltage regulator enters FCR mode.				
5	Reserved					
6	PF Mode	When input is active, voltage regulator enters PF mode.				
7	VAR Mode	When input is active, voltage regulator enters VAR mode.				
8	UP	Different functions for different excitation modes, 10ms for active				
9	DOWN	detection.				
10	Alarm Reset	When input is active, all alarms are removed automatically.				
11	Alt. Configuration 1	When input is active, alt. configuration 1 is active.				
12	Alt. Configuration 2	When input is active, alt. configuration 2 is active.				
13	Reserved					
14	Reserved					
15	Reserved					
16	Reserved					
17	Reserved					
18	Reserved					
19	Reserved					
20	Reserved					
	Table 12 Alt. Configuration Contents					
No	ltom	Decemptor Denge Default Decemption				

Table 12 Alt. Configuration Contents

No.	ltem	Parameter Range	Default	Description
0	Enable	(0-1)	0	0: Disable; 1: Enable.
				0: 3P3W (U-V-W)
1	AC Input Sampling	(0-1)	0	1: 2-phase (V-W)
				2: 2-phase (U-W)
2	Gen Rated Voltage	(30-30000)V	230	Gen rated voltage.
3	Gen Rated Frequency	(10.0-100.0)Hz	50.0	
4	Gen Rated Current	(5-6000)A	500	
5	Gen Rated Active Power	(0-6000)kW	276	
6	Gen Rated Reactive	(0-6000)kvar	210	
0	Power	(0-0000)kvai	210	
7	Gen Rated Apparent	(0-6000)kVA	346	
/	Power	(0-0000)KVA	540	

No.	Item	Parameter Range	Default	Description
8	Rated Power Factor	(0.00-1.00)	0.8	
9	Rated Excitation Current	(0-200)V	63	
10	Rated Field Current	(0-10)A	5.0	

ANOTE: When "Alt. Configuration 1" is chosen, if this input is active, alt. configuration is active, that is, related parameters are changed as parameters of "Alt. Configuration 1".

7 PARAMETER SETTING

It needs to input the same password with voltage regulator for parameter setting via PC software or mobile APP.

ANOTES:

- a) Voltage regulator needs to be powered on (USB or excitation power) for parameter setting via mobile APP.
- b) Please modify the internal parameters in standby mode (programmable input and output configuration, multiple delays, etc.) otherwise fault alarm or other abnormal conditions may appear. PID parameters can be directly adjusted in running.
- c) Higher threshold must be greater than the lower threshold, such as over voltage threshold must be greater than under voltage threshold; otherwise over voltage and under voltage will occur at the same time.
- d) Please set return value correctly for warning alarm, otherwise, alarm will be abnormal; when setting higher warning, return value should be less than set value, when setting lower warning, return value should be greater than set value.
- e) Programmable input 1-4 cannot be set as the same items, otherwise it may have fault; while programmable output 1-2 can be set as the same item.

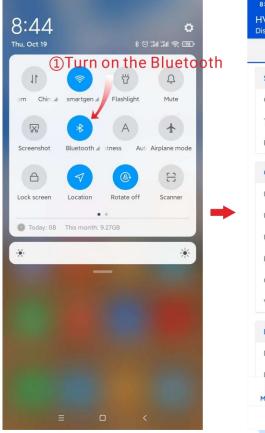
8 REAL-TIME DATA ANALYSIS

Real-time data curve analysis can be conducted via PC software or mobile APP. 8 parameters can be monitored at the same time, each monitoring parameter can set max value, min value. The following diagram shows data analysis interface.

Click "Start" button to monitor the data, click "Pause" button to suspend data monitoring, click "Stop" button to stop data monitoring. Click "Save Data" button can save the curve as csv file, click "Load Data" can load the saved curve file.

Sampling interval of real-time data is fixed as 10ms.

Fig.23 Real-time Data Analysis Diagram on PC Software


9 BLUETOOTH CONNECTION

Download APP via www.smartgen.com.cn or www.smartgen.cn.

ANOTE: This application APP is only available for Android version.

Connection steps:

- 1. Turn on phone's Bluetooth;
- 2. Open APP, click "Scan";
- 3. Find "HVR1000", then click "Connect" button;
- 4. Prompt "Connect successful".

8:45 🗇		\$ 2501	M 🗟 📼
HVR1000 Disconnecter	d		Scan
Live [Data	Live Wr	ning
State	Click	"Scan"	to sca
Current Mo	ode:		
Total (kW)	:		
Running: -	-hms		
Generator			
U(U-V): -	-V		
U(V-W): -	V		
U(W-U): -			
	uence:		
	n Frequency: -	Hz	
	lance:%		
Load			
IA:A			
IB:A	-0	\$	m
Monitor	Config	History	Setting
	≡ 0		

Fig.24 APP Connection Diagram 1-2

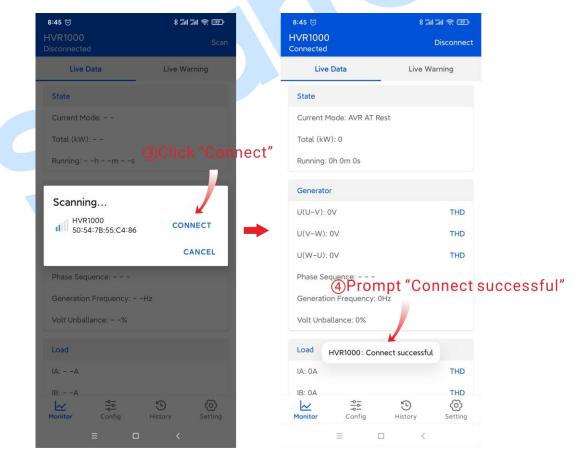


Fig.25 APP Connection Diagram 3-4

10 COMMISSIONING

Take AVR mode as the example to do commissioning.

- Check all the connection wires are correct and wires diameter is suitable.
- Set parameter (gen rated parameters, excitation mode, etc.) through USB interface via PC software or Bluetooth via mobile APP.
- Enable the threshold start mode, set initial duty cycle and proper PID parameter, and take appropriate protective measures, then start the genset. When gen voltage reaches start voltage, the voltage regulator enters soft start status. After soft starting, regulate PWM duty cycle and stabilize generator terminal voltage automatically according to U/F characteristic.
- When the regulator is working normally, sudden load/load dump test can be conducted, check the voltage curve, and adjust PID parameters to meet dynamic characteristic demand of generator.
- If there are any other questions, please contact SmartGen's service.

11 TYPICAL APPLICATION

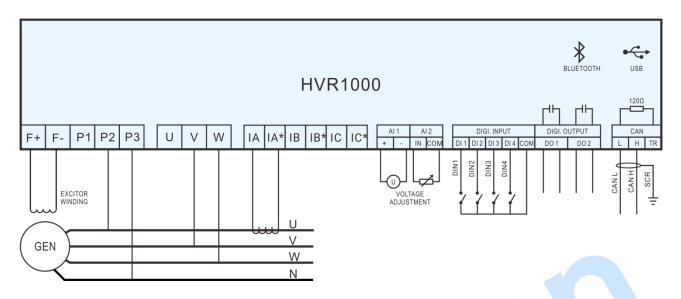
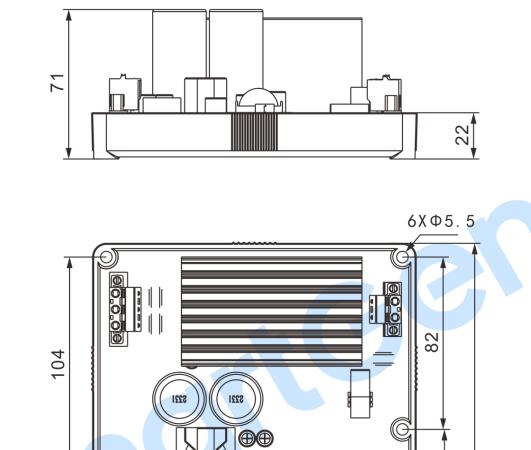
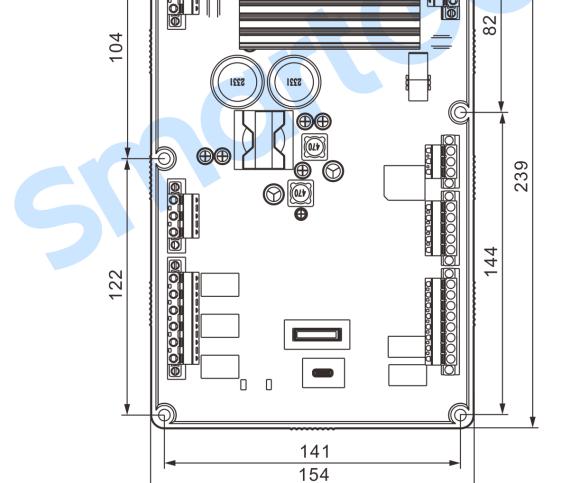


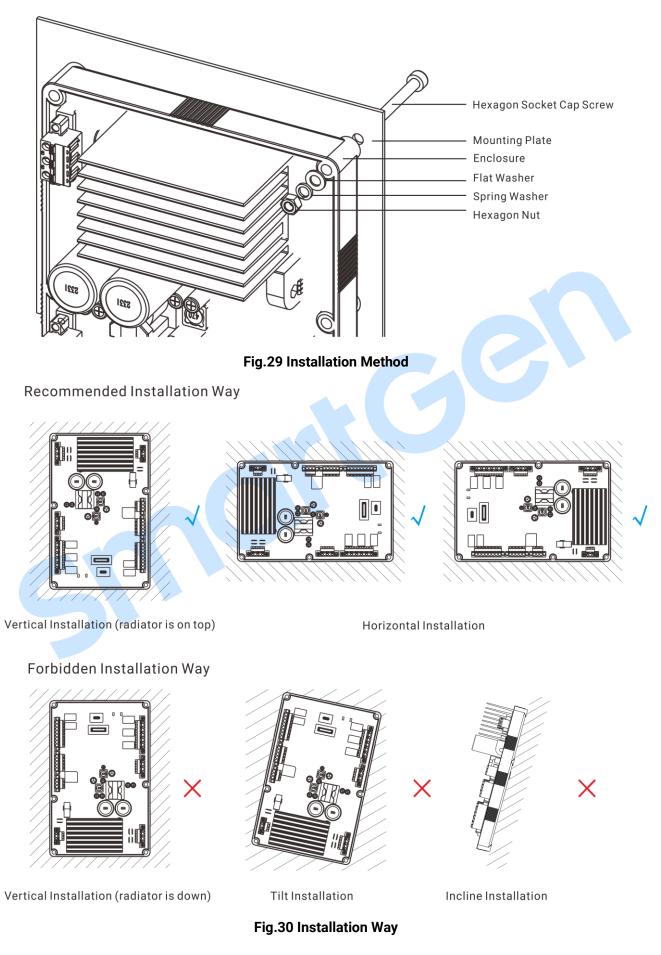
Fig.26 Typical Application of (2-phase (V-W)) Self-Excitation/Auxiliary Winding




Fig.27 (3P3W) PMG Typical Application

12 INSTALLATION

12.1 OVERALL AND INSTALLATION DIMENSION


Unit: mm

12.2 INSTALLATION METHOD AND WAY

The power of digital voltage regulator is connected to P1 P2 P3 that is regulated by switching power through the internal rectification filter, and provides power to the voltage regulator, which can be single phase or three phases.

<u>Output and Expansion Relay:</u> All outputs are relay contact outputs. If the expansion relay is needed, freewheel diode (relay coil is DC) and resistor and capacitor circuit (relay coil is AC) shall be added to the two ends of the relay coils in order to prevent disturbing the controller or other equipment.

<u>AC Input:</u> Controller current input must be connected to outside current transformer. The secondary side current of the current transformer must be 5A or 1A, and at the same time, current transformer phase and input voltage phase must be correct, otherwise the collected current and active power maybe incorrect.

WARNING! When there is load current, open circuit of transformer's secondary side is prohibited.

HVR1000 Digital Voltage Regulator User Manual

13 FAULT FINDING

Table 13 Fault Finding

Symptoms	Possible Solutions
Regulator Non-operation	Check if the power connections are normal;
Gen Terminal Voltage Unavailable	Check if the power fuse is normal.
	Check if the set rated gen voltage is correct;
Gen Terminal Voltage Low	Check if the set U/F characteristic slope is correct;
	Check if the generator is running at rated speed.
	Check if the set rated gen voltage is correct;
Gen Terminal Voltage High	Check if the set U/F characteristic slope is correct;
	Check if the generator is running at rated speed.
Con Torminal Valtage Instability	Check if the connections of gen terminal voltage are normal;
Gen Terminal Voltage Instability	Check if the PID parameter setting is proper, adjust PID parameter.
	Check connections;
CAN Communication Failure	Check if H and L line of CAN interface is connected reversely;
	120 Ω resistance between CAN's A and B is recommended.

14 APPENDIX 1 (CAN COMMUNICATION PROTOCOL)

Table 14 Request Data Message

Message ID	Item	Cycle	Remark
0x0CFDFA11	Accumulated Active Energy	100ms	
0x0CFDFD11	Gen W-phase Power	100ms	
0x0CFE0011	Gen V-phase Power	100ms	
0x0CFE0311	Gen U-phase Power	100ms	
0x0CFE0411	Total Gen AC Reactive Power	100ms	Details refer to the following table.
0x0CFE0511	Total Gen AC Power	100ms	
0x0CFE0611	Average Gen AC Power	100ms	
0x0C100011	Alarm and Status	100ms	

Table 15 Request Message Parameter Details

Message ID	Parameter	Location	Bit Length	Accuracy	Offset	Note
0x0CFDFA11	Accum. Active Energy	1.1	32	1 kWh/bit	0	
	Gen WU Line Voltage	1.1	16	1V/bit	0	
0x0CFDFD11	Gen Frequency	5.1	16	1/128Hz/bit	0	
	Gen C-phase Current	7.1	16	1A/bit	0	
	Gen VW Line Voltage	1.1	16	1V/bit	0	
0x0CFE0011	Gen Frequency	5.1	16	1/128Hz/bit	0	
	Gen B-phase Current	7.1	16	1A/bit	0	
	Gen UV Line Voltage	1.1	16	1V/bit	0	
0x0CFE0311	Gen Frequency	5.1	16	1/128Hz/bit	0	
	Gen A-phase Current	7.1	16	1A/bit	0	
	Total Reactive Power	1.1	32	1 var/bit	-2 000 000 000	
0x0CFE0411	Power Factor	5.1	16	1/16384/bit	-1	
	Load Characteristic	6.1	2	/	0	00b Capacitive 01b Inductive
0x0CFE0511	Total Active Power	1.1	32	1 w/bit	-2 000000000	
	Total Apparent Power	5.1	32	1VA/bit	-2 000000000	

Message ID	Parameter	Location	Bit Length	Accuracy	Offset	Note
	Average Gen Line Voltage	1.1	16	1V/bit	0	
0x0CFE0611	Gen Frequency	5.1	16	1/128Hz/bit	0	
	Gen Average Current	7.1	16	1A/bit	0	
0.00100011	Excitation Mode	1.1	2	/	0	00bAVR Mode; 01bFCR Mode; 10bVAR Mode; 11bPF Mode.
0x0C100011	Fault Alarm	2.1	1	/	0	0 No Alarm 1 Fault Alarm
	Warning Alarm	3.1	1	/	0	0 No Alarm 1 Warn Alarm
Table 16 Received Data Message						

Table 16 Received Data Message

Message ID	ltem	Cycle	Remark		
0x0C100111	Set Regulation Mode	/			
0x0C100211	AVR Mode Parameter	10ms			
0x0C100311	FCR Mode Parameter	10ms	Details refer to the following table.		
0x0C100411	VAR Mode Parameter	10ms			
0x0C100511	PF Mode Parameter	10ms			
Remark: If no new data is received within the specified cycle, parameters received last time are retained.					

Table 17 Received Message Parameter Details

Message ID	Parameter	Location	Bit Length	Accuracy	Offset	Note
0x0C100111	Regulation Mode	1.1	2	0	0	00b AVR Mode; 01b FCR Mode; 10b VAR Mode; 11b PF Mode.
0x0C100211	Fine-tuning Deviation of Output Voltage	1.1	16	0.01%/bit	0%	(0-100.00)%
0x0C100311	Fine-tuning Deviation of Output Field Current	1.1	16	0.01%/bit	0%	(0-100.00)%
0x0C100411	Fine-tuning Deviation of Output Reactive Power	1.1	16	0.01%/bit	0%	(0-100.00)%

Message ID	Parameter	Location	Bit Length	Accuracy	Offset	Note
0x0C100511	Fine-tuning Deviation of Output Power Factor	1.1	16	0.01%/bit	0%	(0-100.00)%

ANOTE: CAN message is encoded in Intel format, with the lowest byte first.

Example of fine-tuning parameter calculation:

1. Voltage fine-tuning of CAN communication in AVR mode:

When gen rated voltage is 400V, fine-tuning setting lower limit is -10%(-40V), upper limit is 10%(40V), output voltage needs to be regulated to 380V, voltage deviation is (380-400=-20V), deviation value is (-20-(-40))/(40-(-40)) = 25%.

CAN request target value is 25%/(0.01%) = 2500, 2500 (decimal) is converted to 0x09C4 (hex). CAN request message: ID: 0x0C100211, data: C4 09 00 00 00 00 00 00.

- 2. Fine-tuning calculation of CAN communication in FCR, VAR mode is same as AVR mode.
- 3. Power factor fine-tuning of CAN communication in PF mode:

When PF lower limit is 0.5L, upper limit is 0.5C, output power factor needs to be regulated to 0.6L, transformed value of output power value is: (0.6L-0.5L)/(0.5C-0.5L) = 10%.

ANOTE: When it is capacitive load, actual calculation value is (2-power factor).

CAN request target value is 10%/(0.01%) = 1000, 1000 (decimal) is converted to 0x03E8 (hex). CAN request message: ID: 0x0C100511, data: E8 03 00 00 00 00 00 00.

15 APPENDIX 2 SYMBOL AND TERM DEFINITION

Table 18 Symbol and Term Definition

Symbol	Term	Remark		
AVR	Automatic voltage regulation mode			
FCR	Field current regulation mode			
VAR	Reactive power regulation mode			
PF	Power factor regulation mode			
LCF	Load compensation function			
F _{start}	Start frequency			
F _{knee}	Knee frequency			
Flcf	Load compensation frequency			
F _{rated}	Rated frequency			
SLOPE	U/F slope	U/F characteristic		
Ulcf	Load compensation voltage			
Tlcf	Load compensation time	Load compensation function		
T _{rise}	Load compensation rise slope			
EV	Voltage fine-tuning deviation			
ER	Resistance fine-tuning deviation			
EC	Fine-tuning deviation of CAN			
EC	communication			
ET	Total deviation			
IFEL	Forced excitation limit of field current			
IOEL	Over-excitation limit			
lE	Actual field current	Details refer to description of ever evolution		
Tq	Allowing time of forced excitation	Details refer to description of over-excitation		
t	Calculation value of inverse time			
В	Heat accumulation			
Bo	Max allowing heat accumulation			
l _{eq}	Equivalent stator current			
T	Allowing delay under equivalent stator			
T _{eq}	current	Details refer to description of stator current limit		
lgL	Max long time allowing stator current			
IL	Actual stator current			
tg	Calculation value of inverse time			